Abstract:The advent of AI has influenced many aspects of human life, from self-driving cars and intelligent chatbots to text-based image and video generation models capable of creating realistic images and videos based on user prompts (text-to-image, image-to-image, and image-to-video). AI-based methods for image and video super resolution, video frame interpolation, denoising, and compression have already gathered significant attention and interest in the industry and some solutions are already being implemented in real-world products and services. However, to achieve widespread integration and acceptance, AI-generated and enhanced content must be visually accurate, adhere to intended use, and maintain high visual quality to avoid degrading the end user's quality of experience (QoE). One way to monitor and control the visual "quality" of AI-generated and -enhanced content is by deploying Image Quality Assessment (IQA) and Video Quality Assessment (VQA) models. However, most existing IQA and VQA models measure visual fidelity in terms of "reconstruction" quality against a pristine reference content and were not designed to assess the quality of "generative" artifacts. To address this, newer metrics and models have recently been proposed, but their performance evaluation and overall efficacy have been limited by datasets that were too small or otherwise lack representative content and/or distortion capacity; and by performance measures that can accurately report the success of an IQA/VQA model for "GenAI". This paper examines the current shortcomings and possibilities presented by AI-generated and enhanced image and video content, with a particular focus on end-user perceived quality. Finally, we discuss open questions and make recommendations for future work on the "GenAI" quality assessment problems, towards further progressing on this interesting and relevant field of research.
Abstract:For full-reference image quality assessment (FR-IQA) using deep-learning approaches, the perceptual similarity score between a distorted image and a reference image is typically computed as a distance measure between features extracted from a pretrained CNN or more recently, a Transformer network. Often, these intermediate features require further fine-tuning or processing with additional neural network layers to align the final similarity scores with human judgments. So far, most IQA models based on foundation models have primarily relied on the final layer or the embedding for the quality score estimation. In contrast, this work explores the potential of utilizing the intermediate features of these foundation models, which have largely been unexplored so far in the design of low-level perceptual similarity metrics. We demonstrate that the intermediate features are comparatively more effective. Moreover, without requiring any training, these metrics can outperform both traditional and state-of-the-art learned metrics by utilizing distance measures between the features.
Abstract:Perceptual similarity metrics have progressively become more correlated with human judgments on perceptual similarity; however, despite recent advances, the addition of an imperceptible distortion can still compromise these metrics. In our study, we systematically examine the robustness of these metrics to imperceptible adversarial perturbations. Following the two-alternative forced-choice experimental design with two distorted images and one reference image, we perturb the distorted image closer to the reference via an adversarial attack until the metric flips its judgment. We first show that all metrics in our study are susceptible to perturbations generated via common adversarial attacks such as FGSM, PGD, and the One-pixel attack. Next, we attack the widely adopted LPIPS metric using spatial-transformation-based adversarial perturbations (stAdv) in a white-box setting to craft adversarial examples that can effectively transfer to other similarity metrics in a black-box setting. We also combine the spatial attack stAdv with PGD ($\ell_\infty$-bounded) attack to increase transferability and use these adversarial examples to benchmark the robustness of both traditional and recently developed metrics. Our benchmark provides a good starting point for discussion and further research on the robustness of metrics to imperceptible adversarial perturbations.
Abstract:Research on video frame interpolation has made significant progress in recent years. However, existing methods mostly use off-the-shelf metrics to measure the quality of interpolation results with the exception of a few methods that employ user studies, which is time-consuming. As video frame interpolation results often exhibit unique artifacts, existing quality metrics sometimes are not consistent with human perception when measuring the interpolation results. Some recent deep learning-based perceptual quality metrics are shown more consistent with human judgments, but their performance on videos is compromised since they do not consider temporal information. In this paper, we present a dedicated perceptual quality metric for measuring video frame interpolation results. Our method learns perceptual features directly from videos instead of individual frames. It compares pyramid features extracted from video frames and employs Swin Transformer blocks-based spatio-temporal modules to extract spatio-temporal information. To train our metric, we collected a new video frame interpolation quality assessment dataset. Our experiments show that our dedicated quality metric outperforms state-of-the-art methods when measuring video frame interpolation results. Our code and model are made publicly available at \url{https://github.com/hqqxyy/VFIPS}.
Abstract:Existing perceptual similarity metrics assume an image and its reference are well aligned. As a result, these metrics are often sensitive to a small alignment error that is imperceptible to the human eyes. This paper studies the effect of small misalignment, specifically a small shift between the input and reference image, on existing metrics, and accordingly develops a shift-tolerant similarity metric. This paper builds upon LPIPS, a widely used learned perceptual similarity metric, and explores architectural design considerations to make it robust against imperceptible misalignment. Specifically, we study a wide spectrum of neural network elements, such as anti-aliasing filtering, pooling, striding, padding, and skip connection, and discuss their roles in making a robust metric. Based on our studies, we develop a new deep neural network-based perceptual similarity metric. Our experiments show that our metric is tolerant to imperceptible shifts while being consistent with the human similarity judgment.