Abstract:Video quality assessment (VQA) is an important processing task, aiming at predicting the quality of videos in a manner highly consistent with human judgments of perceived quality. Traditional VQA models based on natural image and/or video statistics, which are inspired both by models of projected images of the real world and by dual models of the human visual system, deliver only limited prediction performances on real-world user-generated content (UGC), as exemplified in recent large-scale VQA databases containing large numbers of diverse video contents crawled from the web. Fortunately, recent advances in deep neural networks and Large Multimodality Models (LMMs) have enabled significant progress in solving this problem, yielding better results than prior handcrafted models. Numerous deep learning-based VQA models have been developed, with progress in this direction driven by the creation of content-diverse, large-scale human-labeled databases that supply ground truth psychometric video quality data. Here, we present a comprehensive survey of recent progress in the development of VQA algorithms and the benchmarking studies and databases that make them possible. We also analyze open research directions on study design and VQA algorithm architectures.
Abstract:Restoring images captured under adverse weather conditions is a fundamental task for many computer vision applications. However, most existing weather restoration approaches are only capable of handling a specific type of degradation, which is often insufficient in real-world scenarios, such as rainy-snowy or rainy-hazy weather. Towards being able to address these situations, we propose a multi-weather Transformer, or MWFormer for short, which is a holistic vision Transformer that aims to solve multiple weather-induced degradations using a single, unified architecture. MWFormer uses hyper-networks and feature-wise linear modulation blocks to restore images degraded by various weather types using the same set of learned parameters. We first employ contrastive learning to train an auxiliary network that extracts content-independent, distortion-aware feature embeddings that efficiently represent predicted weather types, of which more than one may occur. Guided by these weather-informed predictions, the image restoration Transformer adaptively modulates its parameters to conduct both local and global feature processing, in response to multiple possible weather. Moreover, MWFormer allows for a novel way of tuning, during application, to either a single type of weather restoration or to hybrid weather restoration without any retraining, offering greater controllability than existing methods. Our experimental results on multi-weather restoration benchmarks show that MWFormer achieves significant performance improvements compared to existing state-of-the-art methods, without requiring much computational cost. Moreover, we demonstrate that our methodology of using hyper-networks can be integrated into various network architectures to further boost their performance. The code is available at: https://github.com/taco-group/MWFormer
Abstract:Demand for streaming services, including satellite, continues to exhibit unprecedented growth. Internet Service Providers find themselves at the crossroads of technological advancements and rising customer expectations. To stay relevant and competitive, these ISPs must ensure their networks deliver optimal video streaming quality, a key determinant of user satisfaction. Towards this end, it is important to have accurate Quality of Experience prediction models in place. However, achieving robust performance by these models requires extensive data sets labeled by subjective opinion scores on videos impaired by diverse playback disruptions. To bridge this data gap, we introduce the LIVE-Viasat Real-World Satellite QoE Database. This database consists of 179 videos recorded from real-world streaming services affected by various authentic distortion patterns. We also conducted a comprehensive subjective study involving 54 participants, who contributed both continuous-time opinion scores and endpoint (retrospective) QoE scores. Our analysis sheds light on various determinants influencing subjective QoE, such as stall events, spatial resolutions, bitrate, and certain network parameters. We demonstrate the usefulness of this unique new resource by evaluating the efficacy of prevalent QoE-prediction models on it. We also created a new model that maps the network parameters to predicted human perception scores, which can be used by ISPs to optimize the video streaming quality of their networks. Our proposed model, which we call SatQA, is able to accurately predict QoE using only network parameters, without any access to pixel data or video-specific metadata, estimated by Spearman's Rank Order Correlation Coefficient (SROCC), Pearson Linear Correlation Coefficient (PLCC), and Root Mean Squared Error (RMSE), indicating high accuracy and reliability.
Abstract:The advent of AI has influenced many aspects of human life, from self-driving cars and intelligent chatbots to text-based image and video generation models capable of creating realistic images and videos based on user prompts (text-to-image, image-to-image, and image-to-video). AI-based methods for image and video super resolution, video frame interpolation, denoising, and compression have already gathered significant attention and interest in the industry and some solutions are already being implemented in real-world products and services. However, to achieve widespread integration and acceptance, AI-generated and enhanced content must be visually accurate, adhere to intended use, and maintain high visual quality to avoid degrading the end user's quality of experience (QoE). One way to monitor and control the visual "quality" of AI-generated and -enhanced content is by deploying Image Quality Assessment (IQA) and Video Quality Assessment (VQA) models. However, most existing IQA and VQA models measure visual fidelity in terms of "reconstruction" quality against a pristine reference content and were not designed to assess the quality of "generative" artifacts. To address this, newer metrics and models have recently been proposed, but their performance evaluation and overall efficacy have been limited by datasets that were too small or otherwise lack representative content and/or distortion capacity; and by performance measures that can accurately report the success of an IQA/VQA model for "GenAI". This paper examines the current shortcomings and possibilities presented by AI-generated and enhanced image and video content, with a particular focus on end-user perceived quality. Finally, we discuss open questions and make recommendations for future work on the "GenAI" quality assessment problems, towards further progressing on this interesting and relevant field of research.
Abstract:Adaptive video streaming allows for the construction of bitrate ladders that deliver perceptually optimized visual quality to viewers under bandwidth constraints. Two common approaches to adaptation are per-title encoding and per-shot encoding. The former involves encoding each program, movie, or other content in a manner that is perceptually- and bandwidth-optimized for that content but is otherwise fixed. The latter is a more granular approach that optimizes the encoding parameters for each scene or shot (however defined) of a video content. Per-shot video encoding, as pioneered by Netflix, encodes on a per-shot basis using the Dynamic Optimizer (DO). Under the control of the VMAF perceptual video quality prediction engine, the DO delivers high-quality videos to millions of viewers at considerably reduced bitrates than per-title or fixed bitrate ladder encoding. A variety of per-title and per-shot encoding techniques have been recently proposed that seek to reduce computational overhead and to construct optimal bitrate ladders more efficiently using low-level features extracted from source videos. Here we develop a perceptually optimized method of constructing optimal per-shot bitrate and quality ladders, using an ensemble of low-level features and Visual Information Fidelity (VIF) features extracted from different scales and subbands. We compare the performance of our model, which we call VIF-ladder, against other content-adaptive bitrate ladder prediction methods, counterparts of them that we designed to construct quality ladders, a fixed bitrate ladder, and bitrate ladders constructed via exhaustive encoding using Bjontegaard delta metrics.
Abstract:3D generation guided by text-to-image diffusion models enables the creation of visually compelling assets. However previous methods explore generation based on image or text. The boundaries of creativity are limited by what can be expressed through words or the images that can be sourced. We present YouDream, a method to generate high-quality anatomically controllable animals. YouDream is guided using a text-to-image diffusion model controlled by 2D views of a 3D pose prior. Our method generates 3D animals that are not possible to create using previous text-to-3D generative methods. Additionally, our method is capable of preserving anatomic consistency in the generated animals, an area where prior text-to-3D approaches often struggle. Moreover, we design a fully automated pipeline for generating commonly found animals. To circumvent the need for human intervention to create a 3D pose, we propose a multi-agent LLM that adapts poses from a limited library of animal 3D poses to represent the desired animal. A user study conducted on the outcomes of YouDream demonstrates the preference of the animal models generated by our method over others. Turntable results and code are released at https://youdream3d.github.io/
Abstract:Recent advancements in text-to-3D generation have demonstrated the ability to generate high quality 3D assets. However while generating animals these methods underperform, often portraying inaccurate anatomy and geometry. Towards ameliorating this defect, we present C3DAG, a novel pose-Controlled text-to-3D Animal Generation framework which generates a high quality 3D animal consistent with a given pose. We also introduce an automatic 3D shape creator tool, that allows dynamic pose generation and modification via a web-based tool, and that generates a 3D balloon animal using simple geometries. A NeRF is then initialized using this 3D shape using depth-controlled SDS. In the next stage, the pre-trained NeRF is fine-tuned using quadruped-pose-controlled SDS. The pipeline that we have developed not only produces geometrically and anatomically consistent results, but also renders highly controlled 3D animals, unlike prior methods which do not allow fine-grained pose control.
Abstract:The deep learning revolution has strongly impacted low-level image processing tasks such as style/domain transfer, enhancement/restoration, and visual quality assessments. Despite often being treated separately, the aforementioned tasks share a common theme of understanding, editing, or enhancing the appearance of input images without modifying the underlying content. We leverage this observation to develop a novel disentangled representation learning method that decomposes inputs into content and appearance features. The model is trained in a self-supervised manner and we use the learned features to develop a new quality prediction model named DisQUE. We demonstrate through extensive evaluations that DisQUE achieves state-of-the-art accuracy across quality prediction tasks and distortion types. Moreover, we demonstrate that the same features may also be used for image processing tasks such as HDR tone mapping, where the desired output characteristics may be tuned using example input-output pairs.
Abstract:High Dynamic Range (HDR) videos have enjoyed a surge in popularity in recent years due to their ability to represent a wider range of contrast and color than Standard Dynamic Range (SDR) videos. Although HDR video capture has seen increasing popularity because of recent flagship mobile phones such as Apple iPhones, Google Pixels, and Samsung Galaxy phones, a broad swath of consumers still utilize legacy SDR displays that are unable to display HDR videos. As result, HDR videos must be processed, i.e., tone-mapped, before streaming to a large section of SDR-capable video consumers. However, server-side tone-mapping involves automating decisions regarding the choices of tone-mapping operators (TMOs) and their parameters to yield high-fidelity outputs. Moreover, these choices must be balanced against the effects of lossy compression, which is ubiquitous in streaming scenarios. In this work, we develop a novel, efficient model of objective video quality named Cut-FUNQUE that is able to accurately predict the visual quality of tone-mapped and compressed HDR videos. Finally, we evaluate Cut-FUNQUE on a large-scale crowdsourced database of such videos and show that it achieves state-of-the-art accuracy.
Abstract:High Dynamic Range (HDR) videos are able to represent wider ranges of contrasts and colors than Standard Dynamic Range (SDR) videos, giving more vivid experiences. Due to this, HDR videos are expected to grow into the dominant video modality of the future. However, HDR videos are incompatible with existing SDR displays, which form the majority of affordable consumer displays on the market. Because of this, HDR videos must be processed by tone-mapping them to reduced bit-depths to service a broad swath of SDR-limited video consumers. Here, we analyze the impact of tone-mapping operators on the visual quality of streaming HDR videos. To this end, we built the first large-scale subjectively annotated open-source database of compressed tone-mapped HDR videos, containing 15,000 tone-mapped sequences derived from 40 unique HDR source contents. The videos in the database were labeled with more than 750,000 subjective quality annotations, collected from more than 1,600 unique human observers. We demonstrate the usefulness of the new subjective database by benchmarking objective models of visual quality on it. We envision that the new LIVE Tone-Mapped HDR (LIVE-TMHDR) database will enable significant progress on HDR video tone mapping and quality assessment in the future. To this end, we make the database freely available to the community at https://live.ece.utexas.edu/research/LIVE_TMHDR/index.html