Abstract:Spatial-temporal forecasting is crucial and widely applicable in various domains such as traffic, energy, and climate. Benefiting from the abundance of unlabeled spatial-temporal data, self-supervised methods are increasingly adapted to learn spatial-temporal representations. However, it encounters three key challenges: 1) the difficulty in selecting reliable negative pairs due to the homogeneity of variables, hindering contrastive learning methods; 2) overlooking spatial correlations across variables over time; 3) limitations of efficiency and scalability in existing self-supervised learning methods. To tackle these, we propose a lightweight representation-learning model ST-ReP, integrating current value reconstruction and future value prediction into the pre-training framework for spatial-temporal forecasting. And we design a new spatial-temporal encoder to model fine-grained relationships. Moreover, multi-time scale analysis is incorporated into the self-supervised loss to enhance predictive capability. Experimental results across diverse domains demonstrate that the proposed model surpasses pre-training-based baselines, showcasing its ability to learn compact and semantically enriched representations while exhibiting superior scalability.
Abstract:Prevalent lossy image compression schemes can be divided into: 1) explicit image compression (EIC), including traditional standards and neural end-to-end algorithms; 2) implicit image compression (IIC) based on implicit neural representations (INR). The former is encountering impasses of either leveling off bitrate reduction at a cost of tremendous complexity while the latter suffers from excessive smoothing quality as well as lengthy decoder models. In this paper, we propose an innovative paradigm, which we dub \textbf{Unicorn} (\textbf{U}nified \textbf{N}eural \textbf{I}mage \textbf{C}ompression with \textbf{O}ne \textbf{N}number \textbf{R}econstruction). By conceptualizing the images as index-image pairs and learning the inherent distribution of pairs in a subtle neural network model, Unicorn can reconstruct a visually pleasing image from a randomly generated noise with only one index number. The neural model serves as the unified decoder of images while the noises and indexes corresponds to explicit representations. As a proof of concept, we propose an effective and efficient prototype of Unicorn based on latent diffusion models with tailored model designs. Quantitive and qualitative experimental results demonstrate that our prototype achieves significant bitrates reduction compared with EIC and IIC algorithms. More impressively, benefitting from the unified decoder, our compression ratio escalates as the quantity of images increases. We envision that more advanced model designs will endow Unicorn with greater potential in image compression. We will release our codes in \url{https://github.com/uniqzheng/Unicorn-Laduree}.
Abstract:Video quality assessment (VQA) is an important processing task, aiming at predicting the quality of videos in a manner highly consistent with human judgments of perceived quality. Traditional VQA models based on natural image and/or video statistics, which are inspired both by models of projected images of the real world and by dual models of the human visual system, deliver only limited prediction performances on real-world user-generated content (UGC), as exemplified in recent large-scale VQA databases containing large numbers of diverse video contents crawled from the web. Fortunately, recent advances in deep neural networks and Large Multimodality Models (LMMs) have enabled significant progress in solving this problem, yielding better results than prior handcrafted models. Numerous deep learning-based VQA models have been developed, with progress in this direction driven by the creation of content-diverse, large-scale human-labeled databases that supply ground truth psychometric video quality data. Here, we present a comprehensive survey of recent progress in the development of VQA algorithms and the benchmarking studies and databases that make them possible. We also analyze open research directions on study design and VQA algorithm architectures.
Abstract:Traditional and neural video codecs commonly encounter limitations in controllability and generality under ultra-low-bitrate coding scenarios. To overcome these challenges, we propose M3-CVC, a controllable video compression framework incorporating multimodal generative models. The framework utilizes a semantic-motion composite strategy for keyframe selection to retain critical information. For each keyframe and its corresponding video clip, a dialogue-based large multimodal model (LMM) approach extracts hierarchical spatiotemporal details, enabling both inter-frame and intra-frame representations for improved video fidelity while enhancing encoding interpretability. M3-CVC further employs a conditional diffusion-based, text-guided keyframe compression method, achieving high fidelity in frame reconstruction. During decoding, textual descriptions derived from LMMs guide the diffusion process to restore the original video's content accurately. Experimental results demonstrate that M3-CVC significantly outperforms the state-of-the-art VVC standard in ultra-low bitrate scenarios, particularly in preserving semantic and perceptual fidelity.
Abstract:Multimodal large language models (MLLMs) have shown impressive capabilities in document understanding, a rapidly growing research area with significant industrial demand in recent years. As a multimodal task, document understanding requires models to possess both perceptual and cognitive abilities. However, current MLLMs often face conflicts between perception and cognition. Taking a document VQA task (cognition) as an example, an MLLM might generate answers that do not match the corresponding visual content identified by its OCR (perception). This conflict suggests that the MLLM might struggle to establish an intrinsic connection between the information it "sees" and what it "understands." Such conflicts challenge the intuitive notion that cognition is consistent with perception, hindering the performance and explainability of MLLMs. In this paper, we define the conflicts between cognition and perception as Cognition and Perception (C&P) knowledge conflicts, a form of multimodal knowledge conflicts, and systematically assess them with a focus on document understanding. Our analysis reveals that even GPT-4o, a leading MLLM, achieves only 68.6% C&P consistency. To mitigate the C&P knowledge conflicts, we propose a novel method called Multimodal Knowledge Consistency Fine-tuning. This method first ensures task-specific consistency and then connects the cognitive and perceptual knowledge. Our method significantly reduces C&P knowledge conflicts across all tested MLLMs and enhances their performance in both cognitive and perceptual tasks in most scenarios.
Abstract:Accurate and robust initialization is essential for Visual-Inertial Odometry (VIO), as poor initialization can severely degrade pose accuracy. During initialization, it is crucial to estimate parameters such as accelerometer bias, gyroscope bias, initial velocity, and gravity, etc. The IMU sensor requires precise estimation of gyroscope bias because gyroscope bias affects rotation, velocity and position. Most existing VIO initialization methods adopt Structure from Motion (SfM) to solve for gyroscope bias. However, SfM is not stable and efficient enough in fast motion or degenerate scenes. To overcome these limitations, we extended the rotation-translation-decoupling framework by adding new uncertainty parameters and optimization modules. First, we adopt a gyroscope bias optimizer that incorporates probabilistic normal epipolar constraints. Second, we fuse IMU and visual measurements to solve for velocity, gravity, and scale efficiently. Finally, we design an additional refinement module that effectively diminishes gravity and scale errors. Extensive initialization tests on the EuRoC dataset show that our method reduces the gyroscope bias and rotation estimation error by an average of 16% and 4% respectively. It also significantly reduces the gravity error, with an average reduction of 29%.
Abstract:Video quality assessment (VQA) is a crucial task in the development of video compression standards, as it directly impacts the viewer experience. This paper presents the results of the Compressed Video Quality Assessment challenge, held in conjunction with the Advances in Image Manipulation (AIM) workshop at ECCV 2024. The challenge aimed to evaluate the performance of VQA methods on a diverse dataset of 459 videos, encoded with 14 codecs of various compression standards (AVC/H.264, HEVC/H.265, AV1, and VVC/H.266) and containing a comprehensive collection of compression artifacts. To measure the methods performance, we employed traditional correlation coefficients between their predictions and subjective scores, which were collected via large-scale crowdsourced pairwise human comparisons. For training purposes, participants were provided with the Compressed Video Quality Assessment Dataset (CVQAD), a previously developed dataset of 1022 videos. Up to 30 participating teams registered for the challenge, while we report the results of 6 teams, which submitted valid final solutions and code for reproducing the results. Moreover, we calculated and present the performance of state-of-the-art VQA methods on the developed dataset, providing a comprehensive benchmark for future research. The dataset, results, and online leaderboard are publicly available at https://challenges.videoprocessing.ai/challenges/compressed-video-quality-assessment.html.
Abstract:In the era of content creation revolution propelled by advancements in generative models, the field of web design remains unexplored despite its critical role in modern digital communication. The web design process is complex and often time-consuming, especially for those with limited expertise. In this paper, we introduce Web Rendering Parameters Generation (WebRPG), a new task that aims at automating the generation for visual presentation of web pages based on their HTML code. WebRPG would contribute to a faster web development workflow. Since there is no existing benchmark available, we develop a new dataset for WebRPG through an automated pipeline. Moreover, we present baseline models, utilizing VAE to manage numerous elements and rendering parameters, along with custom HTML embedding for capturing essential semantic and hierarchical information from HTML. Extensive experiments, including customized quantitative evaluations for this specific task, are conducted to evaluate the quality of the generated results.
Abstract:Recently, large language models (LLMs) and multimodal large language models (MLLMs) have demonstrated promising results on document visual question answering (VQA) task, particularly after training on document instruction datasets. An effective evaluation method for document instruction data is crucial in constructing instruction data with high efficacy, which, in turn, facilitates the training of LLMs and MLLMs for document VQA. However, most existing evaluation methods for instruction data are limited to the textual content of the instructions themselves, thereby hindering the effective assessment of document instruction datasets and constraining their construction. In this paper, we propose ProcTag, a data-oriented method that assesses the efficacy of document instruction data. ProcTag innovatively performs tagging on the execution process of instructions rather than the instruction text itself. By leveraging the diversity and complexity of these tags to assess the efficacy of the given dataset, ProcTag enables selective sampling or filtering of document instructions. Furthermore, DocLayPrompt, a novel semi-structured layout-aware document prompting strategy, is proposed for effectively representing documents. Experiments demonstrate that sampling existing open-sourced and generated document VQA/instruction datasets with ProcTag significantly outperforms current methods for evaluating instruction data. Impressively, with ProcTag-based sampling in the generated document datasets, only 30.5\% of the document instructions are required to achieve 100\% efficacy compared to the complete dataset. The code is publicly available at https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/DocumentUnderstanding/ProcTag.
Abstract:With the rise of various online and mobile payment systems, transaction fraud has become a significant threat to financial security. This study explores the application of advanced machine learning models, specifically XGBoost and LightGBM, for developing a more accurate and robust Payment Security Protection Model.To enhance data reliability, we meticulously processed the data sources and used SMOTE (Synthetic Minority Over-sampling Technique) to address class imbalance and improve data representation. By selecting highly correlated features, we aimed to strengthen the training process and boost model performance.We conducted thorough performance evaluations of our proposed models, comparing them against traditional methods including Random Forest, Neural Network, and Logistic Regression. Key metrics such as Precision, Recall, and F1 Score were used to rigorously assess their effectiveness.Our detailed analyses and comparisons reveal that the combination of SMOTE with XGBoost and LightGBM offers a highly efficient and powerful mechanism for payment security protection. The results show that these models not only outperform traditional approaches but also hold significant promise for advancing the field of transaction fraud prevention.