Abstract:In recent years, deep learning-based image compression, particularly through generative models, has emerged as a pivotal area of research. Despite significant advancements, challenges such as diminished sharpness and quality in reconstructed images, learning inefficiencies due to mode collapse, and data loss during transmission persist. To address these issues, we propose a novel compression model that incorporates a denoising step with diffusion models, significantly enhancing image reconstruction fidelity by sub-information(e.g., edge and depth) from leveraging latent space. Empirical experiments demonstrate that our model achieves superior or comparable results in terms of image quality and compression efficiency when measured against the existing models. Notably, our model excels in scenarios of partial image loss or excessive noise by introducing an edge estimation network to preserve the integrity of reconstructed images, offering a robust solution to the current limitations of image compression.
Abstract:Knowledge Distillation (KD) transfers knowledge from a large pre-trained teacher network to a compact and efficient student network, making it suitable for deployment on resource-limited media terminals. However, traditional KD methods require balanced data to ensure robust training, which is often unavailable in practical applications. In such scenarios, a few head categories occupy a substantial proportion of examples. This imbalance biases the trained teacher network towards the head categories, resulting in severe performance degradation on the less represented tail categories for both the teacher and student networks. In this paper, we propose a novel framework called Knowledge Rectification Distillation (KRDistill) to address the imbalanced knowledge inherited in the teacher network through the incorporation of the balanced category priors. Furthermore, we rectify the biased predictions produced by the teacher network, particularly focusing on the tail categories. Consequently, the teacher network can provide balanced and accurate knowledge to train a reliable student network. Intensive experiments conducted on various long-tailed datasets demonstrate that our KRDistill can effectively train reliable student networks in realistic scenarios of data imbalance.
Abstract:Background-Induced Text2Image (BIT2I) aims to generate foreground content according to the text on the given background image. Most studies focus on generating high-quality foreground content, although they ignore the relationship between the two contents. In this study, we analyzed a novel Background-Aware Text2Image (BAT2I) task in which the generated content matches the input background. We proposed a Background-Aware Text to Image synthesis and manipulation Network (BATINet), which contains two key components: Position Detect Network (PDN) and Harmonize Network (HN). The PDN detects the most plausible position of the text-relevant object in the background image. The HN harmonizes the generated content referring to background style information. Finally, we reconstructed the generation network, which consists of the multi-GAN and attention module to match more user preferences. Moreover, we can apply BATINet to text-guided image manipulation. It solves the most challenging task of manipulating the shape of an object. We demonstrated through qualitative and quantitative evaluations on the CUB dataset that the proposed model outperforms other state-of-the-art methods.
Abstract:Recently, text-guided image manipulation has received increasing attention in the research field of multimedia processing and computer vision due to its high flexibility and controllability. Its goal is to semantically manipulate parts of an input reference image according to the text descriptions. However, most of the existing works have the following problems: (1) text-irrelevant content cannot always be maintained but randomly changed, (2) the performance of image manipulation still needs to be further improved, (3) only can manipulate descriptive attributes. To solve these problems, we propose a novel image manipulation method that interactively edits an image using complex text instructions. It allows users to not only improve the accuracy of image manipulation but also achieve complex tasks such as enlarging, dwindling, or removing objects and replacing the background with the input image. To make these tasks possible, we apply three strategies. First, the given image is divided into text-relevant content and text-irrelevant content. Only the text-relevant content is manipulated and the text-irrelevant content can be maintained. Second, a super-resolution method is used to enlarge the manipulation region to further improve the operability and to help manipulate the object itself. Third, a user interface is introduced for editing the segmentation map interactively to re-modify the generated image according to the user's desires. Extensive experiments on the Caltech-UCSD Birds-200-2011 (CUB) dataset and Microsoft Common Objects in Context (MS COCO) datasets demonstrate our proposed method can enable interactive, flexible, and accurate image manipulation in real-time. Through qualitative and quantitative evaluations, we show that the proposed model outperforms other state-of-the-art methods.
Abstract:Joint super-resolution and inverse tone-mapping (SR-ITM) aims to enhance the visual quality of videos that have quality deficiencies in resolution and dynamic range. This problem arises when using 4K high dynamic range (HDR) TVs to watch a low-resolution standard dynamic range (LR SDR) video. Previous methods that rely on learning local information typically cannot do well in preserving color conformity and long-range structural similarity, resulting in unnatural color transition and texture artifacts. In order to tackle these challenges, we propose a global priors guided modulation network (GPGMNet) for joint SR-ITM. In particular, we design a global priors extraction module (GPEM) to extract color conformity prior and structural similarity prior that are beneficial for ITM and SR tasks, respectively. To further exploit the global priors and preserve spatial information, we devise multiple global priors guided spatial-wise modulation blocks (GSMBs) with a few parameters for intermediate feature modulation, in which the modulation parameters are generated by the shared global priors and the spatial features map from the spatial pyramid convolution block (SPCB). With these elaborate designs, the GPGMNet can achieve higher visual quality with lower computational complexity. Extensive experiments demonstrate that our proposed GPGMNet is superior to the state-of-the-art methods. Specifically, our proposed model exceeds the state-of-the-art by 0.64 dB in PSNR, with 69$\%$ fewer parameters and 3.1$\times$ speedup. The code will be released soon.
Abstract:In most video platforms, such as Youtube, and TikTok, the played videos usually have undergone multiple video encodings such as hardware encoding by recording devices, software encoding by video editing apps, and single/multiple video transcoding by video application servers. Previous works in compressed video restoration typically assume the compression artifacts are caused by one-time encoding. Thus, the derived solution usually does not work very well in practice. In this paper, we propose a new method, temporal spatial auxiliary network (TSAN), for transcoded video restoration. Our method considers the unique traits between video encoding and transcoding, and we consider the initial shallow encoded videos as the intermediate labels to assist the network to conduct self-supervised attention training. In addition, we employ adjacent multi-frame information and propose the temporal deformable alignment and pyramidal spatial fusion for transcoded video restoration. The experimental results demonstrate that the performance of the proposed method is superior to that of the previous techniques. The code is available at https://github.com/icecherylXuli/TSAN.
Abstract:During the past decade, implementing reconstruction algorithms on hardware has been at the center of much attention in the field of real-time reconstruction in Compressed Sensing (CS). Orthogonal Matching Pursuit (OMP) is the most widely used reconstruction algorithm on hardware implementation because OMP obtains good quality reconstruction results under a proper time cost. OMP includes Dot Product (DP) and Least Square Problem (LSP). These two parts have numerous division calculations and considerable vector-based multiplications, which limit the implementation of real-time reconstruction on hardware. In the theory of CS, besides the reconstruction algorithm, the choice of sensing matrix affects the quality of reconstruction. It also influences the reconstruction efficiency by affecting the hardware architecture. Thus, designing a real-time hardware architecture of OMP needs to take three factors into consideration. The choice of sensing matrix, the implementation of DP and LSP. In this paper, a sensing matrix, which is sparsity and contains zero vectors mainly, is adopted to optimize the OMP reconstruction to break the bottleneck of reconstruction efficiency. Based on the features of the chosen matrix, the DP and LSP are implemented by simple shift, add and comparing procedures. This work is implemented on the Xilinx Virtex UltraScale+ FPGA device. To reconstruct a digital signal with 1024 length under 0.25 sampling rate, the proposal method costs 0.818us while the state-of-the-art costs 238$us. Thus, this work speedups the state-of-the-art method 290 times. This work costs 0.026s to reconstruct an 8K gray image, which achieves 30FPS real-time reconstruction.
Abstract:Most deep network methods for compressive sensing reconstruction suffer from the black-box characteristic of DNN. In this paper, a deep neural network with interpretable motion estimation named CSMCNet is proposed. The network is able to realize high-quality reconstruction of video compressive sensing by unfolding the iterative steps of optimization based algorithms. A DNN based, multi-hypothesis motion estimation module is designed to improve the reconstruction quality, and a residual module is employed to further narrow down the gap between re-construction results and original signal in our proposed method. Besides, we propose an interpolation module with corresponding training strategy to realize scalable CS reconstruction, which is capable of using the same model to decode various compression ratios. Experiments show that a PSNR of 29.34dB can be achieved at 2% CS ratio (compressed by 98%), which is superior than other state-of-the-art methods. Moreover, the interpolation module is proved to be effective, with significant cost saving and acceptable performance losses.
Abstract:COVID-19 leads to the high demand for remote interactive systems ever seen. One of the key elements of these systems is video streaming, which requires a very high network bandwidth due to its specific real-time demand, especially with high-resolution video. Existing video compression methods are struggling in the trade-off between video quality and the speed requirement. Addressed that the background information rarely changes in most remote meeting cases, we introduce a Region-Of-Interests (ROI) based video compression framework (named RCLC) that leverages the cutting-edge learning-based and conventional technologies. In RCLC, each coming frame is marked as a background-updating (BU) or ROI-updating (RU) frame. By applying the conventional video codec, the BU frame is compressed with low-quality and high-compression, while the ROI from RU-frame is compressed with high-quality and low-compression. The learning-based methods are applied to detect the ROI, blend background-ROI, and enhance video quality. The experimental results show that our RCLC can reduce up to 32.55\% BD-rate for the ROI region compared to H.265 video codec under a similar compression time with 1080p resolution.
Abstract:Physical photographs now can be conveniently scanned by smartphones and stored forever as a digital version, but the scanned photos are not restored well. One solution is to train a supervised deep neural network on many digital photos and the corresponding scanned photos. However, human annotation costs a huge resource leading to limited training data. Previous works create training pairs by simulating degradation using image processing techniques. Their synthetic images are formed with perfectly scanned photos in latent space. Even so, the real-world degradation in smartphone photo scanning remains unsolved since it is more complicated due to real lens defocus, lighting conditions, losing details via printing, various photo materials, and more. To solve these problems, we propose a Deep Photo Scan (DPScan) based on semi-supervised learning. First, we present the way to produce real-world degradation and provide the DIV2K-SCAN dataset for smartphone-scanned photo restoration. Second, by using DIV2K-SCAN, we adopt the concept of Generative Adversarial Networks to learn how to degrade a high-quality image as if it were scanned by a real smartphone, then generate pseudo-scanned photos for unscanned photos. Finally, we propose to train on the scanned and pseudo-scanned photos representing a semi-supervised approach with a cycle process as: high-quality images --> real-/pseudo-scanned photos --> reconstructed images. The proposed semi-supervised scheme can balance between supervised and unsupervised errors while optimizing to limit imperfect pseudo inputs but still enhance restoration. As a result, the proposed DPScan quantitatively and qualitatively outperforms its baseline architecture, state-of-the-art academic research, and industrial products in smartphone photo scanning.