Department of Computer Science, University of Kaiserslautern-Landau, Kaiserslautern, Rhineland-Palatinate, Germany, German Research Center for Artificial Intelligence, DFKI GmbH, Kaiserslautern, Rhineland-Palatinate, Germany
Abstract:Document classification is considered a critical element in automated document processing systems. In recent years multi-modal approaches have become increasingly popular for document classification. Despite their improvements, these approaches are underutilized in the industry due to their requirement for a tremendous volume of training data and extensive computational power. In this paper, we attempt to address these issues by embedding textual features directly into the visual space, allowing lightweight image-based classifiers to achieve state-of-the-art results using small-scale datasets in document classification. To evaluate the efficacy of the visual features generated from our approach on limited data, we tested on the standard dataset Tobacco-3482. Our experiments show a tremendous improvement in image-based classifiers, achieving an improvement of 4.64% using ResNet50 with no document pre-training. It also sets a new record for the best accuracy of the Tobacco-3482 dataset with a score of 91.14% using the image-based DocXClassifier with no document pre-training. The simplicity of the approach, its resource requirements, and subsequent results provide a good prospect for its use in industrial use cases.
Abstract:Early detection and resolution of duplicate and conflicting requirements can significantly enhance project efficiency and overall software quality. Researchers have developed various computational predictors by leveraging Artificial Intelligence (AI) potential to detect duplicate and conflicting requirements. However, these predictors lack in performance and requires more effective approaches to empower software development processes. Following the need of a unique predictor that can accurately identify duplicate and conflicting requirements, this research offers a comprehensive framework that facilitate development of 3 different types of predictive pipelines: language models based, multi-model similarity knowledge-driven and large language models (LLMs) context + multi-model similarity knowledge-driven. Within first type predictive pipelines landscape, framework facilitates conflicting/duplicate requirements identification by leveraging 8 distinct types of LLMs. In second type, framework supports development of predictive pipelines that leverage multi-scale and multi-model similarity knowledge, ranging from traditional similarity computation methods to advanced similarity vectors generated by LLMs. In the third type, the framework synthesizes predictive pipelines by integrating contextual insights from LLMs with multi-model similarity knowledge. Across 6 public benchmark datasets, extensive testing of 760 distinct predictive pipelines demonstrates that hybrid predictive pipelines consistently outperforms other two types predictive pipelines in accurately identifying duplicate and conflicting requirements. This predictive pipeline outperformed existing state-of-the-art predictors performance with an overall performance margin of 13% in terms of F1-score
Abstract:Traditional language models have been extensively evaluated for software engineering domain, however the potential of ChatGPT and Gemini have not been fully explored. To fulfill this gap, the paper in hand presents a comprehensive case study to investigate the potential of both language models for development of diverse types of requirement engineering applications. It deeply explores impact of varying levels of expert knowledge prompts on the prediction accuracies of both language models. Across 4 different public benchmark datasets of requirement engineering tasks, it compares performance of both language models with existing task specific machine/deep learning predictors and traditional language models. Specifically, the paper utilizes 4 benchmark datasets; Pure (7,445 samples, requirements extraction),PROMISE (622 samples, requirements classification), REQuestA (300 question answer (QA) pairs) and Aerospace datasets (6347 words, requirements NER tagging). Our experiments reveal that, in comparison to ChatGPT, Gemini requires more careful prompt engineering to provide accurate predictions. Moreover, across requirement extraction benchmark dataset the state-of-the-art F1-score is 0.86 while ChatGPT and Gemini achieved 0.76 and 0.77,respectively. The State-of-the-art F1-score on requirements classification dataset is 0.96 and both language models 0.78. In name entity recognition (NER) task the state-of-the-art F1-score is 0.92 and ChatGPT managed to produce 0.36, and Gemini 0.25. Similarly, across question answering dataset the state-of-the-art F1-score is 0.90 and ChatGPT and Gemini managed to produce 0.91 and 0.88 respectively. Our experiments show that Gemini requires more precise prompt engineering than ChatGPT. Except for question-answering, both models under-perform compared to current state-of-the-art predictors across other tasks.
Abstract:Diffusion models have enabled the generation of high-quality images with a strong focus on realism and textual fidelity. Yet, large-scale text-to-image models, such as Stable Diffusion, struggle to generate images where foreground objects are placed over a chroma key background, limiting their ability to separate foreground and background elements without fine-tuning. To address this limitation, we present a novel Training-Free Chroma Key Content Generation Diffusion Model (TKG-DM), which optimizes the initial random noise to produce images with foreground objects on a specifiable color background. Our proposed method is the first to explore the manipulation of the color aspects in initial noise for controlled background generation, enabling precise separation of foreground and background without fine-tuning. Extensive experiments demonstrate that our training-free method outperforms existing methods in both qualitative and quantitative evaluations, matching or surpassing fine-tuned models. Finally, we successfully extend it to other tasks (e.g., consistency models and text-to-video), highlighting its transformative potential across various generative applications where independent control of foreground and background is crucial.
Abstract:Large-scale, pre-trained Text-to-Image (T2I) diffusion models have gained significant popularity in image generation tasks and have shown unexpected potential in image Super-Resolution (SR). However, most existing T2I diffusion models are trained with a resolution limit of 512x512, making scaling beyond this resolution an unresolved but necessary challenge for image SR. In this work, we introduce a novel approach that, for the first time, enables these models to generate 2K, 4K, and even 8K images without any additional training. Our method leverages MultiDiffusion, which distributes the generation across multiple diffusion paths to ensure global coherence at larger scales, and local degradation-aware prompt extraction, which guides the T2I model to reconstruct fine local structures according to its low-resolution input. These innovations unlock higher resolutions, allowing T2I diffusion models to be applied to image SR tasks without limitation on resolution.
Abstract:Diffusion models, known for their generative capabilities, have recently shown unexpected potential in image classification tasks by using Bayes' theorem. However, most diffusion classifiers require evaluating all class labels for a single classification, leading to significant computational costs that can hinder their application in large-scale scenarios. To address this, we present a Hierarchical Diffusion Classifier (HDC) that exploits the inherent hierarchical label structure of a dataset. By progressively pruning irrelevant high-level categories and refining predictions only within relevant subcategories, i.e., leaf nodes, HDC reduces the total number of class evaluations. As a result, HDC can accelerate inference by up to 60% while maintaining and, in some cases, improving classification accuracy. Our work enables a new control mechanism of the trade-off between speed and precision, making diffusion-based classification more viable for real-world applications, particularly in large-scale image classification tasks.
Abstract:Dataset distillation has gained significant interest in recent years, yet existing approaches typically distill from the entire dataset, potentially including non-beneficial samples. We introduce a novel "Prune First, Distill After" framework that systematically prunes datasets via loss-based sampling prior to distillation. By leveraging pruning before classical distillation techniques and generative priors, we create a representative core-set that leads to enhanced generalization for unseen architectures - a significant challenge of current distillation methods. More specifically, our proposed framework significantly boosts distilled quality, achieving up to a 5.2 percentage points accuracy increase even with substantial dataset pruning, i.e., removing 80% of the original dataset prior to distillation. Overall, our experimental results highlight the advantages of our easy-sample prioritization and cross-architecture robustness, paving the way for more effective and high-quality dataset distillation.
Abstract:Transformer-based Super-Resolution (SR) models have recently advanced image reconstruction quality, yet challenges remain due to computational complexity and an over-reliance on large patch sizes, which constrain fine-grained detail enhancement. In this work, we propose TaylorIR to address these limitations by utilizing a patch size of 1x1, enabling pixel-level processing in any transformer-based SR model. To address the significant computational demands under the traditional self-attention mechanism, we employ the TaylorShift attention mechanism, a memory-efficient alternative based on Taylor series expansion, achieving full token-to-token interactions with linear complexity. Experimental results demonstrate that our approach achieves new state-of-the-art SR performance while reducing memory consumption by up to 60% compared to traditional self-attention-based transformers.
Abstract:Understanding the correlation between EEG features and cognitive tasks is crucial for elucidating brain function. Brain activity synchronizes during speaking and listening tasks. However, it is challenging to estimate task-dependent brain activity characteristics with methods with low spatial resolution but high temporal resolution, such as EEG, rather than methods with high spatial resolution, like fMRI. This study introduces a novel approach to EEG feature estimation that utilizes the weights of deep learning models to explore this association. We demonstrate that attention maps generated from Vision Transformers and EEGNet effectively identify features that align with findings from prior studies. EEGNet emerged as the most accurate model regarding subject independence and the classification of Listening and Speaking tasks. The application of Mel-Spectrogram with ViTs enhances the resolution of temporal and frequency-related EEG characteristics. Our findings reveal that the characteristics discerned through attention maps vary significantly based on the input data, allowing for tailored feature extraction from EEG signals. By estimating features, our study reinforces known attributes and predicts new ones, potentially offering fresh perspectives in utilizing EEG for medical purposes, such as early disease detection. These techniques will make substantial contributions to cognitive neuroscience.
Abstract:In recent years, deep learning-based image compression, particularly through generative models, has emerged as a pivotal area of research. Despite significant advancements, challenges such as diminished sharpness and quality in reconstructed images, learning inefficiencies due to mode collapse, and data loss during transmission persist. To address these issues, we propose a novel compression model that incorporates a denoising step with diffusion models, significantly enhancing image reconstruction fidelity by sub-information(e.g., edge and depth) from leveraging latent space. Empirical experiments demonstrate that our model achieves superior or comparable results in terms of image quality and compression efficiency when measured against the existing models. Notably, our model excels in scenarios of partial image loss or excessive noise by introducing an edge estimation network to preserve the integrity of reconstructed images, offering a robust solution to the current limitations of image compression.