Abstract:Diffusion models, known for their generative capabilities, have recently shown unexpected potential in image classification tasks by using Bayes' theorem. However, most diffusion classifiers require evaluating all class labels for a single classification, leading to significant computational costs that can hinder their application in large-scale scenarios. To address this, we present a Hierarchical Diffusion Classifier (HDC) that exploits the inherent hierarchical label structure of a dataset. By progressively pruning irrelevant high-level categories and refining predictions only within relevant subcategories, i.e., leaf nodes, HDC reduces the total number of class evaluations. As a result, HDC can accelerate inference by up to 60% while maintaining and, in some cases, improving classification accuracy. Our work enables a new control mechanism of the trade-off between speed and precision, making diffusion-based classification more viable for real-world applications, particularly in large-scale image classification tasks.
Abstract:Large-scale, pre-trained Text-to-Image (T2I) diffusion models have gained significant popularity in image generation tasks and have shown unexpected potential in image Super-Resolution (SR). However, most existing T2I diffusion models are trained with a resolution limit of 512x512, making scaling beyond this resolution an unresolved but necessary challenge for image SR. In this work, we introduce a novel approach that, for the first time, enables these models to generate 2K, 4K, and even 8K images without any additional training. Our method leverages MultiDiffusion, which distributes the generation across multiple diffusion paths to ensure global coherence at larger scales, and local degradation-aware prompt extraction, which guides the T2I model to reconstruct fine local structures according to its low-resolution input. These innovations unlock higher resolutions, allowing T2I diffusion models to be applied to image SR tasks without limitation on resolution.
Abstract:Dataset distillation has gained significant interest in recent years, yet existing approaches typically distill from the entire dataset, potentially including non-beneficial samples. We introduce a novel "Prune First, Distill After" framework that systematically prunes datasets via loss-based sampling prior to distillation. By leveraging pruning before classical distillation techniques and generative priors, we create a representative core-set that leads to enhanced generalization for unseen architectures - a significant challenge of current distillation methods. More specifically, our proposed framework significantly boosts distilled quality, achieving up to a 5.2 percentage points accuracy increase even with substantial dataset pruning, i.e., removing 80% of the original dataset prior to distillation. Overall, our experimental results highlight the advantages of our easy-sample prioritization and cross-architecture robustness, paving the way for more effective and high-quality dataset distillation.
Abstract:Transformer-based Super-Resolution (SR) models have recently advanced image reconstruction quality, yet challenges remain due to computational complexity and an over-reliance on large patch sizes, which constrain fine-grained detail enhancement. In this work, we propose TaylorIR to address these limitations by utilizing a patch size of 1x1, enabling pixel-level processing in any transformer-based SR model. To address the significant computational demands under the traditional self-attention mechanism, we employ the TaylorShift attention mechanism, a memory-efficient alternative based on Taylor series expansion, achieving full token-to-token interactions with linear complexity. Experimental results demonstrate that our approach achieves new state-of-the-art SR performance while reducing memory consumption by up to 60% compared to traditional self-attention-based transformers.
Abstract:The emergence of federated learning (FL) presents a promising approach to leverage decentralized data while preserving privacy. Furthermore, the combination of FL and anomaly detection is particularly compelling because it allows for detecting rare and critical anomalies (usually also rare in locally gathered data) in sensitive data from multiple sources, such as cybersecurity and healthcare. However, benchmarking the performance of anomaly detection methods in FL environments remains an underexplored area. This paper introduces FedAD-Bench, a unified benchmark for evaluating unsupervised anomaly detection algorithms within the context of FL. We systematically analyze and compare the performance of recent deep learning anomaly detection models under federated settings, which were typically assessed solely in centralized settings. FedAD-Bench encompasses diverse datasets and metrics to provide a holistic evaluation. Through extensive experiments, we identify key challenges such as model aggregation inefficiencies and metric unreliability. We present insights into FL's regularization effects, revealing scenarios in which it outperforms centralized approaches due to its inherent ability to mitigate overfitting. Our work aims to establish a standardized benchmark to guide future research and development in federated anomaly detection, promoting reproducibility and fair comparison across studies.
Abstract:Traditional blind image SR methods need to model real-world degradations precisely. Consequently, current research struggles with this dilemma by assuming idealized degradations, which leads to limited applicability to actual user data. Moreover, the ideal scenario - training models on data from the targeted user base - presents significant privacy concerns. To address both challenges, we propose to fuse image SR with federated learning, allowing real-world degradations to be directly learned from users without invading their privacy. Furthermore, it enables optimization across many devices without data centralization. As this fusion is underexplored, we introduce new benchmarks specifically designed to evaluate new SR methods in this federated setting. By doing so, we employ known degradation modeling techniques from SR research. However, rather than aiming to mirror real degradations, our benchmarks use these degradation models to simulate the variety of degradations found across clients within a distributed user base. This distinction is crucial as it circumvents the need to precisely model real-world degradations, which limits contemporary blind image SR research. Our proposed benchmarks investigate blind image SR under new aspects, namely differently distributed degradation types among users and varying user numbers. We believe new methods tested within these benchmarks will perform more similarly in an application, as the simulated scenario addresses the variety while federated learning enables the training on actual degradations.
Abstract:In image Super-Resolution (SR), relying on large datasets for training is a double-edged sword. While offering rich training material, they also demand substantial computational and storage resources. In this work, we analyze dataset pruning as a solution to these challenges. We introduce a novel approach that reduces a dataset to a core-set of training samples, selected based on their loss values as determined by a simple pre-trained SR model. By focusing the training on just 50% of the original dataset, specifically on the samples characterized by the highest loss values, we achieve results comparable to or even surpassing those obtained from training on the entire dataset. Interestingly, our analysis reveals that the top 5% of samples with the highest loss values negatively affect the training process. Excluding these samples and adjusting the selection to favor easier samples further enhances training outcomes. Our work opens new perspectives to the untapped potential of dataset pruning in image SR. It suggests that careful selection of training data based on loss-value metrics can lead to better SR models, challenging the conventional wisdom that more data inevitably leads to better performance.
Abstract:The efficacy of machine learning has traditionally relied on the availability of increasingly larger datasets. However, large datasets pose storage challenges and contain non-influential samples, which could be ignored during training without impacting the final accuracy of the model. In response to these limitations, the concept of distilling the information on a dataset into a condensed set of (synthetic) samples, namely a distilled dataset, emerged. One crucial aspect is the selected architecture (usually ConvNet) for linking the original and synthetic datasets. However, the final accuracy is lower if the employed model architecture differs from the model used during distillation. Another challenge is the generation of high-resolution images, e.g., 128x128 and higher. In this paper, we propose Latent Dataset Distillation with Diffusion Models (LD3M) that combine diffusion in latent space with dataset distillation to tackle both challenges. LD3M incorporates a novel diffusion process tailored for dataset distillation, which improves the gradient norms for learning synthetic images. By adjusting the number of diffusion steps, LD3M also offers a straightforward way of controlling the trade-off between speed and accuracy. We evaluate our approach in several ImageNet subsets and for high-resolution images (128x128 and 256x256). As a result, LD3M consistently outperforms state-of-the-art distillation techniques by up to 4.8 p.p. and 4.2 p.p. for 1 and 10 images per class, respectively.
Abstract:Diffusion Models (DMs) represent a significant advancement in image Super-Resolution (SR), aligning technical image quality more closely with human preferences and expanding SR applications. DMs address critical limitations of previous methods, enhancing overall realism and details in SR images. However, DMs suffer from color-shifting issues, and their high computational costs call for efficient sampling alternatives, underscoring the challenge of balancing computational efficiency and image quality. This survey gives an overview of DMs applied to image SR and offers a detailed analysis that underscores the unique characteristics and methodologies within this domain, distinct from broader existing reviews in the field. It presents a unified view of DM fundamentals and explores research directions, including alternative input domains, conditioning strategies, guidance, corruption spaces, and zero-shot methods. This survey provides insights into the evolution of image SR with DMs, addressing current trends, challenges, and future directions in this rapidly evolving field.
Abstract:This work introduces "You Only Diffuse Areas" (YODA), a novel method for partial diffusion in Single-Image Super-Resolution (SISR). The core idea is to utilize diffusion selectively on spatial regions based on attention maps derived from the low-resolution image and the current time step in the diffusion process. This time-dependent targeting enables a more effective conversion to high-resolution outputs by focusing on areas that benefit the most from the iterative refinement process, i.e., detail-rich objects. We empirically validate YODA by extending leading diffusion-based SISR methods SR3 and SRDiff. Our experiments demonstrate new state-of-the-art performance gains in face and general SR across PSNR, SSIM, and LPIPS metrics. A notable finding is YODA's stabilization effect on training by reducing color shifts, especially when induced by small batch sizes, potentially contributing to resource-constrained scenarios. The proposed spatial and temporal adaptive diffusion mechanism opens promising research directions, including developing enhanced attention map extraction techniques and optimizing inference latency based on sparser diffusion.