Abstract:The emergence of federated learning (FL) presents a promising approach to leverage decentralized data while preserving privacy. Furthermore, the combination of FL and anomaly detection is particularly compelling because it allows for detecting rare and critical anomalies (usually also rare in locally gathered data) in sensitive data from multiple sources, such as cybersecurity and healthcare. However, benchmarking the performance of anomaly detection methods in FL environments remains an underexplored area. This paper introduces FedAD-Bench, a unified benchmark for evaluating unsupervised anomaly detection algorithms within the context of FL. We systematically analyze and compare the performance of recent deep learning anomaly detection models under federated settings, which were typically assessed solely in centralized settings. FedAD-Bench encompasses diverse datasets and metrics to provide a holistic evaluation. Through extensive experiments, we identify key challenges such as model aggregation inefficiencies and metric unreliability. We present insights into FL's regularization effects, revealing scenarios in which it outperforms centralized approaches due to its inherent ability to mitigate overfitting. Our work aims to establish a standardized benchmark to guide future research and development in federated anomaly detection, promoting reproducibility and fair comparison across studies.
Abstract:Traditional blind image SR methods need to model real-world degradations precisely. Consequently, current research struggles with this dilemma by assuming idealized degradations, which leads to limited applicability to actual user data. Moreover, the ideal scenario - training models on data from the targeted user base - presents significant privacy concerns. To address both challenges, we propose to fuse image SR with federated learning, allowing real-world degradations to be directly learned from users without invading their privacy. Furthermore, it enables optimization across many devices without data centralization. As this fusion is underexplored, we introduce new benchmarks specifically designed to evaluate new SR methods in this federated setting. By doing so, we employ known degradation modeling techniques from SR research. However, rather than aiming to mirror real degradations, our benchmarks use these degradation models to simulate the variety of degradations found across clients within a distributed user base. This distinction is crucial as it circumvents the need to precisely model real-world degradations, which limits contemporary blind image SR research. Our proposed benchmarks investigate blind image SR under new aspects, namely differently distributed degradation types among users and varying user numbers. We believe new methods tested within these benchmarks will perform more similarly in an application, as the simulated scenario addresses the variety while federated learning enables the training on actual degradations.
Abstract:In image Super-Resolution (SR), relying on large datasets for training is a double-edged sword. While offering rich training material, they also demand substantial computational and storage resources. In this work, we analyze dataset pruning as a solution to these challenges. We introduce a novel approach that reduces a dataset to a core-set of training samples, selected based on their loss values as determined by a simple pre-trained SR model. By focusing the training on just 50% of the original dataset, specifically on the samples characterized by the highest loss values, we achieve results comparable to or even surpassing those obtained from training on the entire dataset. Interestingly, our analysis reveals that the top 5% of samples with the highest loss values negatively affect the training process. Excluding these samples and adjusting the selection to favor easier samples further enhances training outcomes. Our work opens new perspectives to the untapped potential of dataset pruning in image SR. It suggests that careful selection of training data based on loss-value metrics can lead to better SR models, challenging the conventional wisdom that more data inevitably leads to better performance.
Abstract:The efficacy of machine learning has traditionally relied on the availability of increasingly larger datasets. However, large datasets pose storage challenges and contain non-influential samples, which could be ignored during training without impacting the final accuracy of the model. In response to these limitations, the concept of distilling the information on a dataset into a condensed set of (synthetic) samples, namely a distilled dataset, emerged. One crucial aspect is the selected architecture (usually ConvNet) for linking the original and synthetic datasets. However, the final accuracy is lower if the employed model architecture differs from the model used during distillation. Another challenge is the generation of high-resolution images, e.g., 128x128 and higher. In this paper, we propose Latent Dataset Distillation with Diffusion Models (LD3M) that combine diffusion in latent space with dataset distillation to tackle both challenges. LD3M incorporates a novel diffusion process tailored for dataset distillation, which improves the gradient norms for learning synthetic images. By adjusting the number of diffusion steps, LD3M also offers a straightforward way of controlling the trade-off between speed and accuracy. We evaluate our approach in several ImageNet subsets and for high-resolution images (128x128 and 256x256). As a result, LD3M consistently outperforms state-of-the-art distillation techniques by up to 4.8 p.p. and 4.2 p.p. for 1 and 10 images per class, respectively.
Abstract:Diffusion Models (DMs) represent a significant advancement in image Super-Resolution (SR), aligning technical image quality more closely with human preferences and expanding SR applications. DMs address critical limitations of previous methods, enhancing overall realism and details in SR images. However, DMs suffer from color-shifting issues, and their high computational costs call for efficient sampling alternatives, underscoring the challenge of balancing computational efficiency and image quality. This survey gives an overview of DMs applied to image SR and offers a detailed analysis that underscores the unique characteristics and methodologies within this domain, distinct from broader existing reviews in the field. It presents a unified view of DM fundamentals and explores research directions, including alternative input domains, conditioning strategies, guidance, corruption spaces, and zero-shot methods. This survey provides insights into the evolution of image SR with DMs, addressing current trends, challenges, and future directions in this rapidly evolving field.
Abstract:This work introduces "You Only Diffuse Areas" (YODA), a novel method for partial diffusion in Single-Image Super-Resolution (SISR). The core idea is to utilize diffusion selectively on spatial regions based on attention maps derived from the low-resolution image and the current time step in the diffusion process. This time-dependent targeting enables a more effective conversion to high-resolution outputs by focusing on areas that benefit the most from the iterative refinement process, i.e., detail-rich objects. We empirically validate YODA by extending leading diffusion-based SISR methods SR3 and SRDiff. Our experiments demonstrate new state-of-the-art performance gains in face and general SR across PSNR, SSIM, and LPIPS metrics. A notable finding is YODA's stabilization effect on training by reducing color shifts, especially when induced by small batch sizes, potentially contributing to resource-constrained scenarios. The proposed spatial and temporal adaptive diffusion mechanism opens promising research directions, including developing enhanced attention map extraction techniques and optimizing inference latency based on sparser diffusion.
Abstract:This work introduces Differential Wavelet Amplifier (DWA), a drop-in module for wavelet-based image Super-Resolution (SR). DWA invigorates an approach recently receiving less attention, namely Discrete Wavelet Transformation (DWT). DWT enables an efficient image representation for SR and reduces the spatial area of its input by a factor of 4, the overall model size, and computation cost, framing it as an attractive approach for sustainable ML. Our proposed DWA model improves wavelet-based SR models by leveraging the difference between two convolutional filters to refine relevant feature extraction in the wavelet domain, emphasizing local contrasts and suppressing common noise in the input signals. We show its effectiveness by integrating it into existing SR models, e.g., DWSR and MWCNN, and demonstrate a clear improvement in classical SR tasks. Moreover, DWA enables a direct application of DWSR and MWCNN to input image space, reducing the DWT representation channel-wise since it omits traditional DWT.
Abstract:We present new Recurrent Neural Network (RNN) cells for image classification using a Neural Architecture Search (NAS) approach called DARTS. We are interested in the ReNet architecture, which is a RNN based approach presented as an alternative for convolutional and pooling steps. ReNet can be defined using any standard RNN cells, such as LSTM and GRU. One limitation is that standard RNN cells were designed for one dimensional sequential data and not for two dimensions like it is the case for image classification. We overcome this limitation by using DARTS to find new cell designs. We compare our results with ReNet that uses GRU and LSTM cells. Our found cells outperform the standard RNN cells on CIFAR-10 and SVHN. The improvements on SVHN indicate generalizability, as we derived the RNN cell designs from CIFAR-10 without performing a new cell search for SVHN.
Abstract:This paper presents a novel Diffusion-Wavelet (DiWa) approach for Single-Image Super-Resolution (SISR). It leverages the strengths of Denoising Diffusion Probabilistic Models (DDPMs) and Discrete Wavelet Transformation (DWT). By enabling DDPMs to operate in the DWT domain, our DDPM models effectively hallucinate high-frequency information for super-resolved images on the wavelet spectrum, resulting in high-quality and detailed reconstructions in image space. Quantitatively, we outperform state-of-the-art diffusion-based SISR methods, namely SR3 and SRDiff, regarding PSNR, SSIM, and LPIPS on both face (8x scaling) and general (4x scaling) SR benchmarks. Meanwhile, using DWT enabled us to use fewer parameters than the compared models: 92M parameters instead of 550M compared to SR3 and 9.3M instead of 12M compared to SRDiff. Additionally, our method outperforms other state-of-the-art generative methods on classical general SR datasets while saving inference time. Finally, our work highlights its potential for various applications.
Abstract:With the advent of Deep Learning (DL), Super-Resolution (SR) has also become a thriving research area. However, despite promising results, the field still faces challenges that require further research e.g., allowing flexible upsampling, more effective loss functions, and better evaluation metrics. We review the domain of SR in light of recent advances, and examine state-of-the-art models such as diffusion (DDPM) and transformer-based SR models. We present a critical discussion on contemporary strategies used in SR, and identify promising yet unexplored research directions. We complement previous surveys by incorporating the latest developments in the field such as uncertainty-driven losses, wavelet networks, neural architecture search, novel normalization methods, and the latests evaluation techniques. We also include several visualizations for the models and methods throughout each chapter in order to facilitate a global understanding of the trends in the field. This review is ultimately aimed at helping researchers to push the boundaries of DL applied to SR.