Abstract:Transformers, particularly Vision Transformers (ViTs), have achieved state-of-the-art performance in large-scale image classification. However, they often require large amounts of data and can exhibit biases that limit their robustness and generalizability. This paper introduces ForAug, a novel data augmentation scheme that addresses these challenges and explicitly includes inductive biases, which commonly are part of the neural network architecture, into the training data. ForAug is constructed by using pretrained foundation models to separate and recombine foreground objects with different backgrounds, enabling fine-grained control over image composition during training. It thus increases the data diversity and effective number of training samples. We demonstrate that training on ForNet, the application of ForAug to ImageNet, significantly improves the accuracy of ViTs and other architectures by up to 4.5 percentage points (p.p.) on ImageNet and 7.3 p.p. on downstream tasks. Importantly, ForAug enables novel ways of analyzing model behavior and quantifying biases. Namely, we introduce metrics for background robustness, foreground focus, center bias, and size bias and show that training on ForNet substantially reduces these biases compared to training on ImageNet. In summary, ForAug provides a valuable tool for analyzing and mitigating biases, enabling the development of more robust and reliable computer vision models. Our code and dataset are publicly available at https://github.com/tobna/ForAug.
Abstract:Recent technological advances popularized the use of image generation among the general public. Crafting effective prompts can, however, be difficult for novice users. To tackle this challenge, we developed PromptMap, a new interaction style for text-to-image AI that allows users to freely explore a vast collection of synthetic prompts through a map-like view with semantic zoom. PromptMap groups images visually by their semantic similarity, allowing users to discover relevant examples. We evaluated PromptMap in a between-subject online study ($n=60$) and a qualitative within-subject study ($n=12$). We found that PromptMap supported users in crafting prompts by providing them with examples. We also demonstrated the feasibility of using LLMs to create vast example collections. Our work contributes a new interaction style that supports users unfamiliar with prompting in achieving a satisfactory image output.
Abstract:Recent advancements in text-to-image (T2I) have improved synthesis results, but challenges remain in layout control and generating omnidirectional panoramic images. Dense T2I (DT2I) and spherical T2I (ST2I) models address these issues, but so far no unified approach exists. Trivial approaches, like prompting a DT2I model to generate panoramas can not generate proper spherical distortions and seamless transitions at the borders. Our work shows that spherical dense text-to-image (SDT2I) can be achieved by integrating training-free DT2I approaches into finetuned panorama models. Specifically, we propose MultiStitchDiffusion (MSTD) and MultiPanFusion (MPF) by integrating MultiDiffusion into StitchDiffusion and PanFusion, respectively. Since no benchmark for SDT2I exists, we further construct Dense-Synthetic-View (DSynView), a new synthetic dataset containing spherical layouts to evaluate our models. Our results show that MSTD outperforms MPF across image quality as well as prompt- and layout adherence. MultiPanFusion generates more diverse images but struggles to synthesize flawless foreground objects. We propose bootstrap-coupling and turning off equirectangular perspective-projection attention in the foreground as an improvement of MPF.
Abstract:Dataset distillation is the concept of condensing large datasets into smaller but highly representative synthetic samples. While previous research has primarily focused on image classification, its application to image Super-Resolution (SR) remains underexplored. This exploratory work studies multiple dataset distillation techniques applied to SR, including pixel- and latent-space approaches under different aspects. Our experiments demonstrate that a 91.12% dataset size reduction can be achieved while maintaining comparable SR performance to the full dataset. We further analyze initialization strategies and distillation methods to optimize memory efficiency and computational costs. Our findings provide new insights into dataset distillation for SR and set the stage for future advancements.
Abstract:Satellite imagery is a cornerstone for numerous Remote Sensing (RS) applications; however, limited spatial resolution frequently hinders the precision of such systems, especially in multi-label scene classification tasks as it requires a higher level of detail and feature differentiation. In this study, we explore the efficacy of image Super-Resolution (SR) as a pre-processing step to enhance the quality of satellite images and thus improve downstream classification performance. We investigate four SR models - SRResNet, HAT, SeeSR, and RealESRGAN - and evaluate their impact on multi-label scene classification across various CNN architectures, including ResNet-50, ResNet-101, ResNet-152, and Inception-v4. Our results show that applying SR significantly improves downstream classification performance across various metrics, demonstrating its ability to preserve spatial details critical for multi-label tasks. Overall, this work offers valuable insights into the selection of SR techniques for multi-label prediction in remote sensing and presents an easy-to-integrate framework to improve existing RS systems.
Abstract:Diffusion models have enabled the generation of high-quality images with a strong focus on realism and textual fidelity. Yet, large-scale text-to-image models, such as Stable Diffusion, struggle to generate images where foreground objects are placed over a chroma key background, limiting their ability to separate foreground and background elements without fine-tuning. To address this limitation, we present a novel Training-Free Chroma Key Content Generation Diffusion Model (TKG-DM), which optimizes the initial random noise to produce images with foreground objects on a specifiable color background. Our proposed method is the first to explore the manipulation of the color aspects in initial noise for controlled background generation, enabling precise separation of foreground and background without fine-tuning. Extensive experiments demonstrate that our training-free method outperforms existing methods in both qualitative and quantitative evaluations, matching or surpassing fine-tuned models. Finally, we successfully extend it to other tasks (e.g., consistency models and text-to-video), highlighting its transformative potential across various generative applications where independent control of foreground and background is crucial.
Abstract:Dataset distillation has gained significant interest in recent years, yet existing approaches typically distill from the entire dataset, potentially including non-beneficial samples. We introduce a novel "Prune First, Distill After" framework that systematically prunes datasets via loss-based sampling prior to distillation. By leveraging pruning before classical distillation techniques and generative priors, we create a representative core-set that leads to enhanced generalization for unseen architectures - a significant challenge of current distillation methods. More specifically, our proposed framework significantly boosts distilled quality, achieving up to a 5.2 percentage points accuracy increase even with substantial dataset pruning, i.e., removing 80% of the original dataset prior to distillation. Overall, our experimental results highlight the advantages of our easy-sample prioritization and cross-architecture robustness, paving the way for more effective and high-quality dataset distillation.
Abstract:Large-scale, pre-trained Text-to-Image (T2I) diffusion models have gained significant popularity in image generation tasks and have shown unexpected potential in image Super-Resolution (SR). However, most existing T2I diffusion models are trained with a resolution limit of 512x512, making scaling beyond this resolution an unresolved but necessary challenge for image SR. In this work, we introduce a novel approach that, for the first time, enables these models to generate 2K, 4K, and even 8K images without any additional training. Our method leverages MultiDiffusion, which distributes the generation across multiple diffusion paths to ensure global coherence at larger scales, and local degradation-aware prompt extraction, which guides the T2I model to reconstruct fine local structures according to its low-resolution input. These innovations unlock higher resolutions, allowing T2I diffusion models to be applied to image SR tasks without limitation on resolution.
Abstract:Diffusion models, known for their generative capabilities, have recently shown unexpected potential in image classification tasks by using Bayes' theorem. However, most diffusion classifiers require evaluating all class labels for a single classification, leading to significant computational costs that can hinder their application in large-scale scenarios. To address this, we present a Hierarchical Diffusion Classifier (HDC) that exploits the inherent hierarchical label structure of a dataset. By progressively pruning irrelevant high-level categories and refining predictions only within relevant subcategories, i.e., leaf nodes, HDC reduces the total number of class evaluations. As a result, HDC can accelerate inference by up to 60% while maintaining and, in some cases, improving classification accuracy. Our work enables a new control mechanism of the trade-off between speed and precision, making diffusion-based classification more viable for real-world applications, particularly in large-scale image classification tasks.
Abstract:Transformer-based Super-Resolution (SR) models have recently advanced image reconstruction quality, yet challenges remain due to computational complexity and an over-reliance on large patch sizes, which constrain fine-grained detail enhancement. In this work, we propose TaylorIR to address these limitations by utilizing a patch size of 1x1, enabling pixel-level processing in any transformer-based SR model. To address the significant computational demands under the traditional self-attention mechanism, we employ the TaylorShift attention mechanism, a memory-efficient alternative based on Taylor series expansion, achieving full token-to-token interactions with linear complexity. Experimental results demonstrate that our approach achieves new state-of-the-art SR performance while reducing memory consumption by up to 60% compared to traditional self-attention-based transformers.