Abstract:Spatiotemporal point processes (STPPs) are probabilistic models for events occurring in continuous space and time. Real-world event data often exhibit intricate dependencies and heterogeneous dynamics. By incorporating modern deep learning techniques, STPPs can model these complexities more effectively than traditional approaches. Consequently, the fusion of neural methods with STPPs has become an active and rapidly evolving research area. In this review, we categorize existing approaches, unify key design choices, and explain the challenges of working with this data modality. We further highlight emerging trends and diverse application domains. Finally, we identify open challenges and gaps in the literature.
Abstract:Data preprocessing is a critical yet frequently neglected aspect of machine learning, often paid little attention despite its potentially significant impact on model performance. While automated machine learning pipelines are starting to recognize and integrate data preprocessing into their solutions for classification and regression tasks, this integration is lacking for more specialized tasks like survival or time-to-event models. As a result, survival analysis not only faces the general challenges of data preprocessing but also suffers from the lack of tailored, automated solutions in this area. To address this gap, this paper presents 'CleanSurvival', a reinforcement-learning-based solution for optimizing preprocessing pipelines, extended specifically for survival analysis. The framework can handle continuous and categorical variables, using Q-learning to select which combination of data imputation, outlier detection and feature extraction techniques achieves optimal performance for a Cox, random forest, neural network or user-supplied time-to-event model. The package is available on GitHub: https://github.com/datasciapps/CleanSurvival Experimental benchmarks on real-world datasets show that the Q-learning-based data preprocessing results in superior predictive performance to standard approaches, finding such a model up to 10 times faster than undirected random grid search. Furthermore, a simulation study demonstrates the effectiveness in different types and levels of missingness and noise in the data.
Abstract:Large language models (LLMs) have been extensively studied for their abilities to generate convincing natural language sequences, however their utility for quantitative information retrieval is less well understood. In this paper we explore the feasibility of LLMs as a mechanism for quantitative knowledge retrieval to aid data analysis tasks such as elicitation of prior distributions for Bayesian models and imputation of missing data. We present a prompt engineering framework, treating an LLM as an interface to a latent space of scientific literature, comparing responses in different contexts and domains against more established approaches. Implications and challenges of using LLMs as 'experts' are discussed.
Abstract:Explainable AI (XAI) and interpretable machine learning methods help to build trust in model predictions and derived insights, yet also present a perverse incentive for analysts to manipulate XAI metrics to support pre-specified conclusions. This paper introduces the concept of X-hacking, a form of p-hacking applied to XAI metrics such as Shap values. We show how an automated machine learning pipeline can be used to search for 'defensible' models that produce a desired explanation while maintaining superior predictive performance to a common baseline. We formulate the trade-off between explanation and accuracy as a multi-objective optimization problem and illustrate the feasibility and severity of X-hacking empirically on familiar real-world datasets. Finally, we suggest possible methods for detection and prevention, and discuss ethical implications for the credibility and reproducibility of XAI research.
Abstract:Algorithmic fairness is an increasingly important field concerned with detecting and mitigating biases in machine learning models. There has been a wealth of literature for algorithmic fairness in regression and classification however there has been little exploration of the field for survival analysis. Survival analysis is the prediction task in which one attempts to predict the probability of an event occurring over time. Survival predictions are particularly important in sensitive settings such as when utilising machine learning for diagnosis and prognosis of patients. In this paper we explore how to utilise existing survival metrics to measure bias with group fairness metrics. We explore this in an empirical experiment with 29 survival datasets and 8 measures. We find that measures of discrimination are able to capture bias well whereas there is less clarity with measures of calibration and scoring rules. We suggest further areas for research including prediction-based fairness metrics for distribution predictions.
Abstract:Energy-Based Models (EBMs) have proven to be a highly effective approach for modelling densities on finite-dimensional spaces. Their ability to incorporate domain-specific choices and constraints into the structure of the model through composition make EBMs an appealing candidate for applications in physics, biology and computer vision and various other fields. In this work, we present a novel class of EBM which is able to learn distributions of functions (such as curves or surfaces) from functional samples evaluated at finitely many points. Two unique challenges arise in the functional context. Firstly, training data is often not evaluated along a fixed set of points. Secondly, steps must be taken to control the behaviour of the model between evaluation points, to mitigate overfitting. The proposed infinite-dimensional EBM employs a latent Gaussian process, which is weighted spectrally by an energy function parameterised with a neural network. The resulting EBM has the ability to utilize irregularly sampled training data and can output predictions at any resolution, providing an effective approach to up-scaling functional data. We demonstrate the efficacy of our proposed approach for modelling a range of datasets, including data collected from Standard and Poor's 500 (S\&P) and UK National grid.
Abstract:In this paper we consider how to evaluate survival distribution predictions with measures of discrimination. This is a non-trivial problem as discrimination measures are the most commonly used in survival analysis and yet there is no clear method to derive a risk prediction from a distribution prediction. We survey methods proposed in literature and software and consider their respective advantages and disadvantages. Whilst distributions are frequently evaluated by discrimination measures, we find that the method for doing so is rarely described in the literature and often leads to unfair comparisons. We find that the most robust method of reducing a distribution to a risk is to sum over the predicted cumulative hazard. We recommend that machine learning survival analysis software implements clear transformations between distribution and risk predictions in order to allow more transparent and accessible model evaluation.
Abstract:Increasing interest in privacy-preserving machine learning has led to new models for synthetic private data generation from undisclosed real data. However, mechanisms of privacy preservation introduce artifacts in the resulting synthetic data that have a significant impact on downstream tasks such as learning predictive models or inference. In particular, bias can affect all analyses as the synthetic data distribution is an inconsistent estimate of the real-data distribution. We propose several bias mitigation strategies using privatized likelihood ratios that have general applicability to differentially private synthetic data generative models. Through large-scale empirical evaluation, we show that bias mitigation provides simple and effective privacy-compliant augmentation for general applications of synthetic data. However, the work highlights that even after bias correction significant challenges remain on the usefulness of synthetic private data generators for tasks such as prediction and inference.
Abstract:There is significant growth and interest in the use of synthetic data as an enabler for machine learning in environments where the release of real data is restricted due to privacy or availability constraints. Despite a large number of methods for synthetic data generation, there are comparatively few results on the statistical properties of models learnt on synthetic data, and fewer still for situations where a researcher wishes to augment real data with another party's synthesised data. We use a Bayesian paradigm to characterise the updating of model parameters when learning in these settings, demonstrating that caution should be taken when applying conventional learning algorithms without appropriate consideration of the synthetic data generating process and learning task. Recent results from general Bayesian updating support a novel and robust approach to Bayesian synthetic-learning founded on decision theory that outperforms standard approaches across repeated experiments on supervised learning and inference problems.
Abstract:Many methods for debiasing classifiers have been proposed, but their effectiveness in practice remains unclear. We evaluate the performance of pre-processing and post-processing debiasers for improving fairness in random forest classifiers trained on a suite of data sets. Specifically, we study how these debiasers generalize with respect to both out-of-sample test error for computing fairness -- performance and fairness -- fairness trade-offs, and on the change in other fairness metrics that were not explicitly optimised. Our results demonstrate that out-of-sample performance on fairness and performance can vary substantially and unexpectedly. Moreover, the variance in estimation arises from class imbalances with respect to both the outcome and the protected classes. Our results highlight the importance of evaluating out-of-sample performance in practical usage.