Abstract:Explainable AI (XAI) and interpretable machine learning methods help to build trust in model predictions and derived insights, yet also present a perverse incentive for analysts to manipulate XAI metrics to support pre-specified conclusions. This paper introduces the concept of X-hacking, a form of p-hacking applied to XAI metrics such as Shap values. We show how an automated machine learning pipeline can be used to search for 'defensible' models that produce a desired explanation while maintaining superior predictive performance to a common baseline. We formulate the trade-off between explanation and accuracy as a multi-objective optimization problem and illustrate the feasibility and severity of X-hacking empirically on familiar real-world datasets. Finally, we suggest possible methods for detection and prevention, and discuss ethical implications for the credibility and reproducibility of XAI research.