German Research Center for Artificial Intelligence, DFKI GmbH, Kaiserslautern, Rhineland-Palatinate, Germany, DeepReader GmbH, Kaiserlautern, Germany
Abstract:Obtaining annotated table structure data for complex tables is a challenging task due to the inherent diversity and complexity of real-world document layouts. The scarcity of publicly available datasets with comprehensive annotations for intricate table structures hinders the development and evaluation of models designed for such scenarios. This research paper introduces a novel approach for generating annotated images for table structure by leveraging conditioned mask images of rows and columns through the application of latent diffusion models. The proposed method aims to enhance the quality of synthetic data used for training object detection models. Specifically, the study employs a conditioning mechanism to guide the generation of complex document table images, ensuring a realistic representation of table layouts. To evaluate the effectiveness of the generated data, we employ the popular YOLOv5 object detection model for training. The generated table images serve as valuable training samples, enriching the dataset with diverse table structures. The model is subsequently tested on the challenging pubtables-1m testset, a benchmark for table structure recognition in complex document layouts. Experimental results demonstrate that the introduced approach significantly improves the quality of synthetic data for training, leading to YOLOv5 models with enhanced performance. The mean Average Precision (mAP) values obtained on the pubtables-1m testset showcase results closely aligned with state-of-the-art methods. Furthermore, low FID results obtained on the synthetic data further validate the efficacy of the proposed methodology in generating annotated images for table structure.
Abstract:In this study, we introduce StylusAI, a novel architecture leveraging diffusion models in the domain of handwriting style generation. StylusAI is specifically designed to adapt and integrate the stylistic nuances of one language's handwriting into another, particularly focusing on blending English handwriting styles into the context of the German writing system. This approach enables the generation of German text in English handwriting styles and German handwriting styles into English, enriching machine-generated handwriting diversity while ensuring that the generated text remains legible across both languages. To support the development and evaluation of StylusAI, we present the \lq{Deutscher Handschriften-Datensatz}\rq~(DHSD), a comprehensive dataset encompassing 37 distinct handwriting styles within the German language. This dataset provides a fundamental resource for training and benchmarking in the realm of handwritten text generation. Our results demonstrate that StylusAI not only introduces a new method for style adaptation in handwritten text generation but also surpasses existing models in generating handwriting samples that improve both text quality and stylistic fidelity, evidenced by its performance on the IAM database and our newly proposed DHSD. Thus, StylusAI represents a significant advancement in the field of handwriting style generation, offering promising avenues for future research and applications in cross-linguistic style adaptation for languages with similar scripts.
Abstract:Deep learning (DL) has revolutionized the field of document image analysis, showcasing superhuman performance across a diverse set of tasks. However, the inherent black-box nature of deep learning models still presents a significant challenge to their safe and robust deployment in industry. Regrettably, while a plethora of research has been dedicated in recent years to the development of DL-powered document analysis systems, research addressing their transparency aspects has been relatively scarce. In this paper, we aim to bridge this research gap by introducing DocXplain, a novel model-agnostic explainability method specifically designed for generating high interpretability feature attribution maps for the task of document image classification. In particular, our approach involves independently segmenting the foreground and background features of the documents into different document elements and then ablating these elements to assign feature importance. We extensively evaluate our proposed approach in the context of document image classification, utilizing 4 different evaluation metrics, 2 widely recognized document benchmark datasets, and 10 state-of-the-art document image classification models. By conducting a thorough quantitative and qualitative analysis against 9 existing state-of-the-art attribution methods, we demonstrate the superiority of our approach in terms of both faithfulness and interpretability. To the best of the authors' knowledge, this work presents the first model-agnostic attribution-based explainability method specifically tailored for document images. We anticipate that our work will significantly contribute to advancing research on transparency, fairness, and robustness of document image classification models.
Abstract:This paper presents VAEneu, an innovative autoregressive method for multistep ahead univariate probabilistic time series forecasting. We employ the conditional VAE framework and optimize the lower bound of the predictive distribution likelihood function by adopting the Continuous Ranked Probability Score (CRPS), a strictly proper scoring rule, as the loss function. This novel pipeline results in forecasting sharp and well-calibrated predictive distribution. Through a comprehensive empirical study, VAEneu is rigorously benchmarked against 12 baseline models across 12 datasets. The results unequivocally demonstrate VAEneu's remarkable forecasting performance. VAEneu provides a valuable tool for quantifying future uncertainties, and our extensive empirical study lays the foundation for future comparative studies for univariate multistep ahead probabilistic forecasting.
Abstract:Detecting diseases from social media has diverse applications, such as public health monitoring and disease spread detection. While language models (LMs) have shown promising performance in this domain, there remains ongoing research aimed at refining their discriminating representations. In this paper, we propose a novel method that integrates Contrastive Learning (CL) with language modeling to address this challenge. Our approach introduces a self-augmentation method, wherein hidden representations of the model are augmented with their own representations. This method comprises two branches: the first branch, a traditional LM, learns features specific to the given data, while the second branch incorporates augmented representations from the first branch to encourage generalization. CL further refines these representations by pulling pairs of original and augmented versions closer while pushing other samples away. We evaluate our method on three NLP datasets encompassing binary, multi-label, and multi-class classification tasks involving social media posts related to various diseases. Our approach demonstrates notable improvements over traditional fine-tuning methods, achieving up to a 2.48% increase in F1-score compared to baseline approaches and a 2.1% enhancement over state-of-the-art methods.
Abstract:Trustworthiness is a major prerequisite for the safe application of opaque deep learning models in high-stakes domains like medicine. Understanding the decision-making process not only contributes to fostering trust but might also reveal previously unknown decision criteria of complex models that could advance the state of medical research. The discovery of decision-relevant concepts from black box models is a particularly challenging task. This study proposes Concept Discovery through Latent Diffusion-based Counterfactual Trajectories (CDCT), a novel three-step framework for concept discovery leveraging the superior image synthesis capabilities of diffusion models. In the first step, CDCT uses a Latent Diffusion Model (LDM) to generate a counterfactual trajectory dataset. This dataset is used to derive a disentangled representation of classification-relevant concepts using a Variational Autoencoder (VAE). Finally, a search algorithm is applied to identify relevant concepts in the disentangled latent space. The application of CDCT to a classifier trained on the largest public skin lesion dataset revealed not only the presence of several biases but also meaningful biomarkers. Moreover, the counterfactuals generated within CDCT show better FID scores than those produced by a previously established state-of-the-art method, while being 12 times more resource-efficient. Unsupervised concept discovery holds great potential for the application of trustworthy AI and the further development of human knowledge in various domains. CDCT represents a further step in this direction.
Abstract:This paper introduces Structured Noise Space GAN (SNS-GAN), a novel approach in the field of generative modeling specifically tailored for class-conditional generation in both image and time series data. It addresses the challenge of effectively integrating class labels into generative models without requiring structural modifications to the network. The SNS-GAN method embeds class conditions within the generator's noise space, simplifying the training process and enhancing model versatility. The model's efficacy is demonstrated through qualitative validations in the image domain and superior performance in time series generation compared to baseline models. This research opens new avenues for the application of GANs in various domains, including but not limited to time series and image data generation.
Abstract:There are not many large medical image datasets available. For these datasets, too small deep learning models can't learn useful features, so they don't work well due to underfitting, and too big models tend to overfit the limited data. As a result, there is a compromise between the two issues. This paper proposes a training strategy Medi-CAT to overcome the underfitting and overfitting phenomena in medical imaging datasets. Specifically, the proposed training methodology employs large pre-trained vision transformers to overcome underfitting and adversarial and contrastive learning techniques to prevent overfitting. The proposed method is trained and evaluated on four medical image classification datasets from the MedMNIST collection. Our experimental results indicate that the proposed approach improves the accuracy up to 2% on three benchmark datasets compared to well-known approaches, whereas it increases the performance up to 4.1% over the baseline methods.
Abstract:An ever-increasing amount of social media content requires advanced AI-based computer programs capable of extracting useful information. Specifically, the extraction of health-related content from social media is useful for the development of diverse types of applications including disease spread, mortality rate prediction, and finding the impact of diverse types of drugs on diverse types of diseases. Language models are competent in extracting the syntactic and semantics of text. However, they face a hard time extracting similar patterns from social media texts. The primary reason for this shortfall lies in the non-standardized writing style commonly employed by social media users. Following the need for an optimal language model competent in extracting useful patterns from social media text, the key goal of this paper is to train language models in such a way that they learn to derive generalized patterns. The key goal is achieved through the incorporation of random weighted perturbation and contrastive learning strategies. On top of a unique training strategy, a meta predictor is proposed that reaps the benefits of 5 different language models for discriminating posts of social media text into non-health and health-related classes. Comprehensive experimentation across 3 public benchmark datasets reveals that the proposed training strategy improves the performance of the language models up to 3.87%, in terms of F1-score, as compared to their performance with traditional training. Furthermore, the proposed meta predictor outperforms existing health mention classification predictors across all 3 benchmark datasets.
Abstract:In this paper, we introduce strategies for developing private Key Information Extraction (KIE) systems by leveraging large pretrained document foundation models in conjunction with differential privacy (DP), federated learning (FL), and Differentially Private Federated Learning (DP-FL). Through extensive experimentation on six benchmark datasets (FUNSD, CORD, SROIE, WildReceipts, XFUND, and DOCILE), we demonstrate that large document foundation models can be effectively fine-tuned for the KIE task under private settings to achieve adequate performance while maintaining strong privacy guarantees. Moreover, by thoroughly analyzing the impact of various training and model parameters on model performance, we propose simple yet effective guidelines for achieving an optimal privacy-utility trade-off for the KIE task under global DP. Finally, we introduce FeAm-DP, a novel DP-FL algorithm that enables efficiently upscaling global DP from a standalone context to a multi-client federated environment. We conduct a comprehensive evaluation of the algorithm across various client and privacy settings, and demonstrate its capability to achieve comparable performance and privacy guarantees to standalone DP, even when accommodating an increasing number of participating clients. Overall, our study offers valuable insights into the development of private KIE systems, and highlights the potential of document foundation models for privacy-preserved Document AI applications. To the best of authors' knowledge, this is the first work that explores privacy preserved document KIE using document foundation models.