Abstract:This paper presents VAEneu, an innovative autoregressive method for multistep ahead univariate probabilistic time series forecasting. We employ the conditional VAE framework and optimize the lower bound of the predictive distribution likelihood function by adopting the Continuous Ranked Probability Score (CRPS), a strictly proper scoring rule, as the loss function. This novel pipeline results in forecasting sharp and well-calibrated predictive distribution. Through a comprehensive empirical study, VAEneu is rigorously benchmarked against 12 baseline models across 12 datasets. The results unequivocally demonstrate VAEneu's remarkable forecasting performance. VAEneu provides a valuable tool for quantifying future uncertainties, and our extensive empirical study lays the foundation for future comparative studies for univariate multistep ahead probabilistic forecasting.
Abstract:This paper introduces Structured Noise Space GAN (SNS-GAN), a novel approach in the field of generative modeling specifically tailored for class-conditional generation in both image and time series data. It addresses the challenge of effectively integrating class labels into generative models without requiring structural modifications to the network. The SNS-GAN method embeds class conditions within the generator's noise space, simplifying the training process and enhancing model versatility. The model's efficacy is demonstrated through qualitative validations in the image domain and superior performance in time series generation compared to baseline models. This research opens new avenues for the application of GANs in various domains, including but not limited to time series and image data generation.
Abstract:Despite various breakthroughs in machine learning and data analysis techniques for improving smart operation and management of urban water infrastructures, some key limitations obstruct this progress. Among these shortcomings, the absence of freely available data due to data privacy or high costs of data gathering and the nonexistence of adequate rare or extreme events in the available data plays a crucial role. Here, Generative Adversarial Networks (GANs) can help overcome these challenges. In machine learning, generative models are a class of methods capable of learning data distribution to generate artificial data. In this study, we developed a GAN model to generate synthetic time series to balance our limited recorded time series data and improve the accuracy of a data-driven model for combined sewer flow prediction. We considered the sewer system of a small town in Germany as the test case. Precipitation and inflow to the storage tanks are used for the Data-Driven model development. The aim is to predict the flow using precipitation data and examine the impact of data augmentation using synthetic data in model performance. Results show that GAN can successfully generate synthetic time series from real data distribution, which helps more accurate peak flow prediction. However, the model without data augmentation works better for dry weather prediction. Therefore, an ensemble model is suggested to combine the advantages of both models.
Abstract:Generative models are designed to address the data scarcity problem. Even with the exploding amount of data, due to computational advancements, some applications (e.g., health care, weather forecast, fault detection) still suffer from data insufficiency, especially in the time-series domain. Thus generative models are essential and powerful tools, but they still lack a consensual approach for quality assessment. Such deficiency hinders the confident application of modern implicit generative models on time-series data. Inspired by assessment methods on the image domain, we introduce the InceptionTime Score (ITS) and the Frechet InceptionTime Distance (FITD) to gauge the qualitative performance of class conditional generative models on the time-series domain. We conduct extensive experiments on 80 different datasets to study the discriminative capabilities of proposed metrics alongside two existing evaluation metrics: Train on Synthetic Test on Real (TSTR) and Train on Real Test on Synthetic (TRTS). Extensive evaluation reveals that the proposed assessment method, i.e., ITS and FITD in combination with TSTR, can accurately assess class-conditional generative model performance.
Abstract:The recent developments in the machine learning domain have enabled the development of complex multivariate probabilistic forecasting models. Therefore, it is pivotal to have a precise evaluation method to gauge the performance and predictability power of these complex methods. To do so, several evaluation metrics have been proposed in the past (such as Energy Score, Dawid-Sebastiani score, variogram score), however, they cannot reliably measure the performance of a probabilistic forecaster. Recently, CRPS-sum has gained a lot of prominence as a reliable metric for multivariate probabilistic forecasting. This paper presents a systematic evaluation of CRPS-sum to understand its discrimination ability. We show that the statistical properties of target data affect the discrimination ability of CRPS-Sum. Furthermore, we highlight that CRPS-Sum calculation overlooks the performance of the model on each dimension. These flaws can lead us to an incorrect assessment of model performance. Finally, with experiments on the real-world dataset, we demonstrate that the shortcomings of CRPS-Sum provide a misleading indication of the probabilistic forecasting performance method. We show that it is easily possible to have a better CRPS-Sum for a dummy model, which looks like random noise, in comparison to the state-of-the-art method.
Abstract:The contribution of this paper is two-fold. First, we present ProbCast - a novel probabilistic model for multivariate time-series forecasting. We employ a conditional GAN framework to train our model with adversarial training. Second, we propose a framework that lets us transform a deterministic model into a probabilistic one with improved performance. The motivation of the framework is to either transform existing highly accurate point forecast models to their probabilistic counterparts or to train GANs stably by selecting the architecture of GAN's component carefully and efficiently. We conduct experiments over two publicly available datasets namely electricity consumption dataset and exchange-rate dataset. The results of the experiments demonstrate the remarkable performance of our model as well as the successful application of our proposed framework.
Abstract:Time series forecasting is one of the challenging problems for humankind. Traditional forecasting methods using mean regression models have severe shortcomings in reflecting real-world fluctuations. While new probabilistic methods rush to rescue, they fight with technical difficulties like quantile crossing or selecting a prior distribution. To meld the different strengths of these fields while avoiding their weaknesses as well as to push the boundary of the state-of-the-art, we introduce ForGAN - one step ahead probabilistic forecasting with generative adversarial networks. ForGAN utilizes the power of the conditional generative adversarial network to learn the data generating distribution and compute probabilistic forecasts from it. We argue how to evaluate ForGAN in opposition to regression methods. To investigate probabilistic forecasting of ForGAN, we create a new dataset and demonstrate our method abilities on it. This dataset will be made publicly available for comparison. Furthermore, we test ForGAN on two publicly available datasets, namely Mackey-Glass dataset and Internet traffic dataset (A5M) where the impressive performance of ForGAN demonstrate its high capability in forecasting future values.