Abstract:In recent years, deep learning-based image compression, particularly through generative models, has emerged as a pivotal area of research. Despite significant advancements, challenges such as diminished sharpness and quality in reconstructed images, learning inefficiencies due to mode collapse, and data loss during transmission persist. To address these issues, we propose a novel compression model that incorporates a denoising step with diffusion models, significantly enhancing image reconstruction fidelity by sub-information(e.g., edge and depth) from leveraging latent space. Empirical experiments demonstrate that our model achieves superior or comparable results in terms of image quality and compression efficiency when measured against the existing models. Notably, our model excels in scenarios of partial image loss or excessive noise by introducing an edge estimation network to preserve the integrity of reconstructed images, offering a robust solution to the current limitations of image compression.
Abstract:Multiple human tracking is a fundamental problem for scene understanding. Although both accuracy and speed are required in real-world applications, recent tracking methods based on deep learning have focused on accuracy and require substantial running time. This study aims to improve running speed by performing human detection at a certain frame interval because it accounts for most of the running time. The question is how to maintain accuracy while skipping human detection. In this paper, we propose a method that complements the detection results with optical flow, based on the fact that someone's appearance does not change much between adjacent frames. To maintain the tracking accuracy, we introduce robust interest point selection within human regions and a tracking termination metric calculated by the distribution of the interest points. On the MOT20 dataset in the MOTChallenge, the proposed SDOF-Tracker achieved the best performance in terms of the total running speed while maintaining the MOTA metric. Our code is available at https://anonymous.4open.science/r/sdof-tracker-75AE.
Abstract:In this paper, we propose a Multiple Human Tracking method using multi-cues including Primitive Action Features (MHT-PAF). MHT-PAF can perform the accurate human tracking in dynamic aerial videos captured by a drone. PAF employs a global context, rich information by multi-label actions, and a middle level feature. The accurate human tracking result using PAF helps multi-frame-based action recognition. In the experiments, we verified the effectiveness of the proposed method using the Okutama-Action dataset. Our code is available online.