Abstract:Existing deep facial animation coding techniques efficiently compress talking head videos by applying deep generative models. Instead of compressing the entire video sequence, these methods focus on compressing only the keyframe and the keypoints of non-keyframes (target frames). The target frames are then reconstructed by utilizing a single keyframe, and the keypoints of the target frame. Although these unidirectional methods can reduce the bitrate, they rely on a single keyframe and often struggle to capture large head movements accurately, resulting in distortions in the facial region. In this paper, we propose a novel bidirectional learned animation codec that generates natural facial videos using past and future keyframes. First, in the Bidirectional Reference-Guided Auxiliary Stream Enhancement (BRG-ASE) process, we introduce a compact auxiliary stream for non-keyframes, which is enhanced by adaptively selecting one of two keyframes (past and future). This stream improves video quality with a slight increase in bitrate. Then, in the Bidirectional Reference-Guided Video Reconstruction (BRG-VRec) process, we animate the adaptively selected keyframe and reconstruct the target frame using both the animated keyframe and the auxiliary frame. Extensive experiments demonstrate a 55% bitrate reduction compared to the latest animation based video codec, and a 35% bitrate reduction compared to the latest video coding standard, Versatile Video Coding (VVC) on a talking head video dataset. It showcases the efficiency of our approach in improving video quality while simultaneously decreasing bitrate.
Abstract:Compressive sensing (CS), acquiring and reconstructing signals below the Nyquist rate, has great potential in image and video acquisition to exploit data redundancy and greatly reduce the amount of sampled data. To further reduce the sampled data while keeping the video quality, this paper explores the temporal redundancy in video CS and proposes a block based adaptive compressive sensing framework with a sampling rate (SR) control strategy. To avoid redundant compression of non-moving regions, we first incorporate moving block detection between consecutive frames, and only transmit the measurements of moving blocks. The non-moving regions are reconstructed from the previous frame. In addition, we propose a block storage system and a dynamic threshold to achieve adaptive SR allocation to each frame based on the area of moving regions and target SR for controlling the average SR within the target SR. Finally, to reduce blocking artifacts and improve reconstruction quality, we adopt a cooperative reconstruction of the moving and non-moving blocks by referring to the measurements of the non-moving blocks from the previous frame. Extensive experiments have demonstrated that this work is able to control SR and obtain better performance than existing works.