Abstract:With the diversification of human-object interaction (HOI) applications and the success of capturing human meshes, HOI reconstruction has gained widespread attention. Existing mainstream HOI reconstruction methods often rely on explicitly modeling interactions between humans and objects. However, such a way leads to a natural conflict between 3D mesh reconstruction, which emphasizes global structure, and fine-grained contact reconstruction, which focuses on local details. To address the limitations of explicit modeling, we propose the End-to-End HOI Reconstruction Transformer with Graph-based Encoding (HOI-TG). It implicitly learns the interaction between humans and objects by leveraging self-attention mechanisms. Within the transformer architecture, we devise graph residual blocks to aggregate the topology among vertices of different spatial structures. This dual focus effectively balances global and local representations. Without bells and whistles, HOI-TG achieves state-of-the-art performance on BEHAVE and InterCap datasets. Particularly on the challenging InterCap dataset, our method improves the reconstruction results for human and object meshes by 8.9% and 8.6%, respectively.
Abstract:Deep convolutional neural networks (CNNs) have been widely used in surface defect detection. However, no CNN architecture is suitable for all detection tasks and designing effective task-specific requires considerable effort. The neural architecture search (NAS) technology makes it possible to automatically generate adaptive data-driven networks. Here, we propose a new method called NAS-ASDet to adaptively design network for surface defect detection. First, a refined and industry-appropriate search space that can adaptively adjust the feature distribution is designed, which consists of repeatedly stacked basic novel cells with searchable attention operations. Then, a progressive search strategy with a deep supervision mechanism is used to explore the search space faster and better. This method can design high-performance and lightweight defect detection networks with data scarcity in industrial scenarios. The experimental results on four datasets demonstrate that the proposed method achieves superior performance and a relatively lighter model size compared to other competitive methods, including both manual and NAS-based approaches.
Abstract:In the surface defect detection, there are some suspicious regions that cannot be uniquely classified as abnormal or normal. The annotating of suspicious regions is easily affected by factors such as workers' emotional fluctuations and judgment standard, resulting in noisy labels, which in turn leads to missing and false detections, and ultimately leads to inconsistent judgments of product quality. Unlike the usual noisy labels, the ones used for surface defect detection appear to be inconsistent rather than mislabeled. The noise occurs in almost every label and is difficult to correct or evaluate. In this paper, we proposed a framework that learns trustworthy models from noisy labels for surface defect defection. At first, to avoid the negative impact of noisy labels on the model, we represent the suspicious regions with consistent and precise elements at the pixel-level and redesign the loss function. Secondly, without changing network structure and adding any extra labels, pluggable spatially correlated Bayesian module is proposed. Finally, the defect discrimination confidence is proposed to measure the uncertainty, with which anomalies can be identified as defects. Our results indicate not only the effectiveness of the proposed method in learning from noisy labels, but also robustness and real-time performance.