Abstract:Adversarial Malware Generation (AMG), the generation of adversarial malware variants to strengthen Deep Learning (DL)-based malware detectors has emerged as a crucial tool in the development of proactive cyberdefense. However, the majority of extant works offer subtle perturbations or additions to executable files and do not explore full-file obfuscation. In this study, we show that an open-source encryption tool coupled with a Reinforcement Learning (RL) framework can successfully obfuscate malware to evade state-of-the-art malware detection engines and outperform techniques that use advanced modification methods. Our results show that the proposed method improves the evasion rate from 27%-49% compared to widely-used state-of-the-art reinforcement learning-based methods.
Abstract:Deep convolutional neural networks (CNNs) have been widely used in surface defect detection. However, no CNN architecture is suitable for all detection tasks and designing effective task-specific requires considerable effort. The neural architecture search (NAS) technology makes it possible to automatically generate adaptive data-driven networks. Here, we propose a new method called NAS-ASDet to adaptively design network for surface defect detection. First, a refined and industry-appropriate search space that can adaptively adjust the feature distribution is designed, which consists of repeatedly stacked basic novel cells with searchable attention operations. Then, a progressive search strategy with a deep supervision mechanism is used to explore the search space faster and better. This method can design high-performance and lightweight defect detection networks with data scarcity in industrial scenarios. The experimental results on four datasets demonstrate that the proposed method achieves superior performance and a relatively lighter model size compared to other competitive methods, including both manual and NAS-based approaches.
Abstract:In the surface defect detection, there are some suspicious regions that cannot be uniquely classified as abnormal or normal. The annotating of suspicious regions is easily affected by factors such as workers' emotional fluctuations and judgment standard, resulting in noisy labels, which in turn leads to missing and false detections, and ultimately leads to inconsistent judgments of product quality. Unlike the usual noisy labels, the ones used for surface defect detection appear to be inconsistent rather than mislabeled. The noise occurs in almost every label and is difficult to correct or evaluate. In this paper, we proposed a framework that learns trustworthy models from noisy labels for surface defect defection. At first, to avoid the negative impact of noisy labels on the model, we represent the suspicious regions with consistent and precise elements at the pixel-level and redesign the loss function. Secondly, without changing network structure and adding any extra labels, pluggable spatially correlated Bayesian module is proposed. Finally, the defect discrimination confidence is proposed to measure the uncertainty, with which anomalies can be identified as defects. Our results indicate not only the effectiveness of the proposed method in learning from noisy labels, but also robustness and real-time performance.
Abstract:Deep learning-based adversarial malware detectors have yielded promising results in detecting never-before-seen malware executables without relying on expensive dynamic behavior analysis and sandbox. Despite their abilities, these detectors have been shown to be vulnerable to adversarial malware variants - meticulously modified, functionality-preserving versions of original malware executables generated by machine learning. Due to the nature of these adversarial modifications, these adversarial methods often use a \textit{single view} of malware executables (i.e., the binary/hexadecimal view) to generate adversarial malware variants. This provides an opportunity for the defenders (i.e., malware detectors) to detect the adversarial variants by utilizing more than one view of a malware file (e.g., source code view in addition to the binary view). The rationale behind this idea is that while the adversary focuses on the binary view, certain characteristics of the malware file in the source code view remain untouched which leads to the detection of the adversarial malware variants. To capitalize on this opportunity, we propose Adversarially Robust Multiview Malware Defense (ARMD), a novel multi-view learning framework to improve the robustness of DL-based malware detectors against adversarial variants. Our experiments on three renowned open-source deep learning-based malware detectors across six common malware categories show that ARMD is able to improve the adversarial robustness by up to seven times on these malware detectors.
Abstract:Automated monitoring of dark web (DW) platforms on a large scale is the first step toward developing proactive Cyber Threat Intelligence (CTI). While there are efficient methods for collecting data from the surface web, large-scale dark web data collection is often hindered by anti-crawling measures. In particular, text-based CAPTCHA serves as the most prevalent and prohibiting type of these measures in the dark web. Text-based CAPTCHA identifies and blocks automated crawlers by forcing the user to enter a combination of hard-to-recognize alphanumeric characters. In the dark web, CAPTCHA images are meticulously designed with additional background noise and variable character length to prevent automated CAPTCHA breaking. Existing automated CAPTCHA breaking methods have difficulties in overcoming these dark web challenges. As such, solving dark web text-based CAPTCHA has been relying heavily on human involvement, which is labor-intensive and time-consuming. In this study, we propose a novel framework for automated breaking of dark web CAPTCHA to facilitate dark web data collection. This framework encompasses a novel generative method to recognize dark web text-based CAPTCHA with noisy background and variable character length. To eliminate the need for human involvement, the proposed framework utilizes Generative Adversarial Network (GAN) to counteract dark web background noise and leverages an enhanced character segmentation algorithm to handle CAPTCHA images with variable character length. Our proposed framework, DW-GAN, was systematically evaluated on multiple dark web CAPTCHA testbeds. DW-GAN significantly outperformed the state-of-the-art benchmark methods on all datasets, achieving over 94.4% success rate on a carefully collected real-world dark web dataset...
Abstract:Internet users have been exposing an increasing amount of Personally Identifiable Information (PII) on social media. Such exposed PII can cause severe losses to the users, and informing users of their PII exposure is crucial to raise their privacy awareness and encourage them to take protective measures. To this end, advanced automatic techniques are needed. While Information Extraction (IE) techniques can be used to extract the PII automatically, Deep Learning (DL)-based IE models alleviate the need for feature engineering and further improve the efficiency. However, DL-based IE models often require large-scale labeled data for training, but PII-labeled social media posts are difficult to obtain due to privacy concerns. Also, these models rely heavily on pre-trained word embeddings, while PII in social media often varies in forms and thus has no fixed representations in pre-trained word embeddings. In this study, we propose the Deep Transfer Learning for PII Extraction (DTL-PIIE) framework to address these two limitations. DTL-PIIE transfers knowledge learned from publicly available PII data to social media to address the problem of rare PII-labeled data. Moreover, our framework leverages Graph Convolutional Networks (GCNs) to incorporate syntactic patterns to guide PIIE without relying on pre-trained word embeddings. Evaluation against benchmark IE models indicates that our approach outperforms state-of-the-art DL-based IE models. Our framework can facilitate various applications, such as PII misuse prediction and privacy risk assessment, protecting the privacy of internet users.
Abstract:In this paper, we first present a new variant of Gaussian restricted Boltzmann machine (GRBM) called multivariate Gaussian restricted Boltzmann machine (MGRBM), with its definition and learning algorithm. Then we propose using a learned GRBM or MGRBM to extract better features for robust speech recognition. Our experiments on Aurora2 show that both GRBM-extracted and MGRBM-extracted feature performs much better than Mel-frequency cepstral coefficient (MFCC) with either HMM-GMM or hybrid HMM-deep neural network (DNN) acoustic model, and MGRBM-extracted feature is slightly better.