Abstract:Deep convolutional neural networks (CNNs) have been widely used in surface defect detection. However, no CNN architecture is suitable for all detection tasks and designing effective task-specific requires considerable effort. The neural architecture search (NAS) technology makes it possible to automatically generate adaptive data-driven networks. Here, we propose a new method called NAS-ASDet to adaptively design network for surface defect detection. First, a refined and industry-appropriate search space that can adaptively adjust the feature distribution is designed, which consists of repeatedly stacked basic novel cells with searchable attention operations. Then, a progressive search strategy with a deep supervision mechanism is used to explore the search space faster and better. This method can design high-performance and lightweight defect detection networks with data scarcity in industrial scenarios. The experimental results on four datasets demonstrate that the proposed method achieves superior performance and a relatively lighter model size compared to other competitive methods, including both manual and NAS-based approaches.
Abstract:In the surface defect detection, there are some suspicious regions that cannot be uniquely classified as abnormal or normal. The annotating of suspicious regions is easily affected by factors such as workers' emotional fluctuations and judgment standard, resulting in noisy labels, which in turn leads to missing and false detections, and ultimately leads to inconsistent judgments of product quality. Unlike the usual noisy labels, the ones used for surface defect detection appear to be inconsistent rather than mislabeled. The noise occurs in almost every label and is difficult to correct or evaluate. In this paper, we proposed a framework that learns trustworthy models from noisy labels for surface defect defection. At first, to avoid the negative impact of noisy labels on the model, we represent the suspicious regions with consistent and precise elements at the pixel-level and redesign the loss function. Secondly, without changing network structure and adding any extra labels, pluggable spatially correlated Bayesian module is proposed. Finally, the defect discrimination confidence is proposed to measure the uncertainty, with which anomalies can be identified as defects. Our results indicate not only the effectiveness of the proposed method in learning from noisy labels, but also robustness and real-time performance.
Abstract:In surface defect detection, due to the extreme imbalance in the number of positive and negative samples, positive-samples-based anomaly detection methods have received more and more attention. Specifically, reconstruction-based methods are the most popular. However, exiting methods are either difficult to repair abnormal foregrounds or reconstruct clear backgrounds. Therefore, we propose a clear memory-augmented auto-encoder. At first, we propose a novel clear memory-augmented module, which combines the encoding and memory-encoding in a way of forgetting and inputting, thereby repairing abnormal foregrounds and preservation clear backgrounds. Secondly, a general artificial anomaly generation algorithm is proposed to simulate anomalies that are as realistic and feature-rich as possible. At last, we propose a novel multi scale feature residual detection method for defect segmentation, which makes the defect location more accurate. CMA-AE conducts comparative experiments using 11 state-of-the-art methods on five benchmark datasets, showing an average 18.6% average improvement in F1-measure.