In surface defect detection, due to the extreme imbalance in the number of positive and negative samples, positive-samples-based anomaly detection methods have received more and more attention. Specifically, reconstruction-based methods are the most popular. However, exiting methods are either difficult to repair abnormal foregrounds or reconstruct clear backgrounds. Therefore, we propose a clear memory-augmented auto-encoder. At first, we propose a novel clear memory-augmented module, which combines the encoding and memory-encoding in a way of forgetting and inputting, thereby repairing abnormal foregrounds and preservation clear backgrounds. Secondly, a general artificial anomaly generation algorithm is proposed to simulate anomalies that are as realistic and feature-rich as possible. At last, we propose a novel multi scale feature residual detection method for defect segmentation, which makes the defect location more accurate. CMA-AE conducts comparative experiments using 11 state-of-the-art methods on five benchmark datasets, showing an average 18.6% average improvement in F1-measure.