Abstract:Large Language Models (LLMs) have demonstrated remarkable performance across diverse domains, prompting researchers to explore their potential for use in recommendation systems. Initial attempts have leveraged the exceptional capabilities of LLMs, such as rich knowledge and strong generalization through In-context Learning, which involves phrasing the recommendation task as prompts. Nevertheless, the performance of LLMs in recommendation tasks remains suboptimal due to a substantial disparity between the training tasks for LLMs and recommendation tasks and inadequate recommendation data during pre-training. This paper introduces RLRF4Rec, a novel framework integrating Reinforcement Learning from Recsys Feedback for Enhanced Recommendation Reranking(RLRF4Rec) with LLMs to address these challenges. Specifically, We first have the LLM generate inferred user preferences based on user interaction history, which is then used to augment traditional ID-based sequence recommendation models. Subsequently, we trained a reward model based on knowledge augmentation recommendation models to evaluate the quality of the reasoning knowledge from LLM. We then select the best and worst responses from the N samples to construct a dataset for LLM tuning. Finally, we design a structure alignment strategy with Direct Preference Optimization(DPO). We validate the effectiveness of RLRF4Rec through extensive experiments, demonstrating significant improvements in recommendation re-ranking metrics compared to baselines. This demonstrates that our approach significantly improves the capability of LLMs to respond to instructions within recommender systems.
Abstract:The recent surge in Multimodal Large Language Models (MLLMs) has showcased their remarkable potential for achieving generalized intelligence by integrating visual understanding into Large Language Models.Nevertheless, the sheer model size of MLLMs leads to substantial memory and computational demands that hinder their widespread deployment. In this work, we do not propose a new efficient model structure or train small-scale MLLMs from scratch. Instead, we focus on what matters for training small-scale MLLMs through knowledge distillation, which is the first step from the multimodal distillation perspective. Our extensive studies involve training strategies, model choices, and distillation algorithms in the knowledge distillation process. These results show that joint alignment for both tokens and logit alignment plays critical roles in teacher-student frameworks. In addition, we draw a series of intriguing observations from this study. By evaluating different benchmarks and proper strategy, even a 2.7B small-scale model can perform on par with larger models with 7B or 13B parameters. Our code and models will be publicly available for further research.
Abstract:Advanced by transformer architecture, vision foundation models (VFMs) achieve remarkable progress in performance and generalization ability. Segment Anything Model (SAM) is one remarkable model that can achieve generalized segmentation. However, most VFMs cannot run in realtime, which makes it difficult to transfer them into several products. On the other hand, current real-time segmentation mainly has one purpose, such as semantic segmentation on the driving scene. We argue that diverse outputs are needed for real applications. Thus, this work explores a new real-time segmentation setting, named all-purpose segmentation in real-time, to transfer VFMs in real-time deployment. It contains three different tasks, including interactive segmentation, panoptic segmentation, and video segmentation. We aim to use one model to achieve the above tasks in real-time. We first benchmark several strong baselines. Then, we present Real-Time All Purpose SAM (RAP-SAM). It contains an efficient encoder and an efficient decoupled decoder to perform prompt-driven decoding. Moreover, we further explore different training strategies and tuning methods to boost co-training performance further. Our code and model are available at https://github.com/xushilin1/RAP-SAM/.
Abstract:Grounding-DINO is a state-of-the-art open-set detection model that tackles multiple vision tasks including Open-Vocabulary Detection (OVD), Phrase Grounding (PG), and Referring Expression Comprehension (REC). Its effectiveness has led to its widespread adoption as a mainstream architecture for various downstream applications. However, despite its significance, the original Grounding-DINO model lacks comprehensive public technical details due to the unavailability of its training code. To bridge this gap, we present MM-Grounding-DINO, an open-source, comprehensive, and user-friendly baseline, which is built with the MMDetection toolbox. It adopts abundant vision datasets for pre-training and various detection and grounding datasets for fine-tuning. We give a comprehensive analysis of each reported result and detailed settings for reproduction. The extensive experiments on the benchmarks mentioned demonstrate that our MM-Grounding-DINO-Tiny outperforms the Grounding-DINO-Tiny baseline. We release all our models to the research community. Codes and trained models are released at https://github.com/open-mmlab/mmdetection/tree/main/configs/mm_grounding_dino.
Abstract:Open-vocabulary object detection (OVOD) aims to detect the objects beyond the set of categories observed during training. This work presents a simple yet effective strategy that leverages the zero-shot classification ability of pre-trained vision-language models (VLM), such as CLIP, to classify proposals for all possible novel classes directly. Unlike previous works that ignore novel classes during training and rely solely on the region proposal network (RPN) for novel object detection, our method selectively filters proposals based on specific design criteria. The resulting sets of identified proposals serve as pseudo-labels for novel classes during the training phase. It enables our self-training strategy to improve the recall and accuracy of novel classes in a self-training manner without requiring additional annotations or datasets. We further propose a simple offline pseudo-label generation strategy to refine the object detector. Empirical evaluations on three datasets, including LVIS, V3Det, and COCO, demonstrate significant improvements over the baseline performance without incurring additional parameters or computational costs during inference. In particular, compared with previous F-VLM, our method achieves a 1.7-2.0% improvement on LVIS dataset and 2.3-3.8% improvement on the recent challenging V3Det dataset. Our method also boosts the strong baseline by 6% mAP on COCO. The code and models will be publicly available at https://github.com/xushilin1/dst-det.
Abstract:In the field of visual scene understanding, deep neural networks have made impressive advancements in various core tasks like segmentation, tracking, and detection. However, most approaches operate on the close-set assumption, meaning that the model can only identify pre-defined categories that are present in the training set. Recently, open vocabulary settings were proposed due to the rapid progress of vision language pre-training. These new approaches seek to locate and recognize categories beyond the annotated label space. The open vocabulary approach is more general, practical, and effective compared to weakly supervised and zero-shot settings. This paper provides a thorough review of open vocabulary learning, summarizing and analyzing recent developments in the field. In particular, we begin by comparing it to related concepts such as zero-shot learning, open-set recognition, and out-of-distribution detection. Then, we review several closely related tasks in the case of segmentation and detection, including long-tail problems, few-shot, and zero-shot settings. For the method survey, we first present the basic knowledge of detection and segmentation in close-set as the preliminary knowledge. Next, we examine various scenarios in which open vocabulary learning is used, identifying common design elements and core ideas. Then, we compare the recent detection and segmentation approaches in commonly used datasets and benchmarks. Finally, we conclude with insights, issues, and discussions regarding future research directions. To our knowledge, this is the first comprehensive literature review of open vocabulary learning. We keep tracing related works at https://github.com/jianzongwu/Awesome-Open-Vocabulary.
Abstract:Panoptic Part Segmentation (PPS) unifies panoptic segmentation and part segmentation into one task. Previous works utilize separated approaches to handle thing, stuff, and part predictions without shared computation and task association. We aim to unify these tasks at the architectural level, designing the first end-to-end unified framework named Panoptic-PartFormer. Moreover, we find the previous metric PartPQ biases to PQ. To handle both issues, we make the following contributions: Firstly, we design a meta-architecture that decouples part feature and things/stuff feature, respectively. We model things, stuff, and parts as object queries and directly learn to optimize all three forms of prediction as a unified mask prediction and classification problem. We term our model as Panoptic-PartFormer. Secondly, we propose a new metric Part-Whole Quality (PWQ) to better measure such task from both pixel-region and part-whole perspectives. It can also decouple the error for part segmentation and panoptic segmentation. Thirdly, inspired by Mask2Former, based on our meta-architecture, we propose Panoptic-PartFormer++ and design a new part-whole cross attention scheme to further boost part segmentation qualities. We design a new part-whole interaction method using masked cross attention. Finally, the extensive ablation studies and analysis demonstrate the effectiveness of both Panoptic-PartFormer and Panoptic-PartFormer++. Compared with previous Panoptic-PartFormer, our Panoptic-PartFormer++ achieves 2% PartPQ and 3% PWQ improvements on the Cityscapes PPS dataset and 5% PartPQ on the Pascal Context PPS dataset. On both datasets, Panoptic-PartFormer++ achieves new state-of-the-art results with a significant cost drop of 70% on GFlops and 50% on parameters. Our models can serve as a strong baseline and aid future research in PPS. Code will be available.
Abstract:Panoptic Part Segmentation (PPS) aims to unify panoptic segmentation and part segmentation into one task. Previous work mainly utilizes separated approaches to handle thing, stuff, and part predictions individually without performing any shared computation and task association. In this work, we aim to unify these tasks at the architectural level, designing the first end-to-end unified method named Panoptic-PartFormer. In particular, motivated by the recent progress in Vision Transformer, we model things, stuff, and part as object queries and directly learn to optimize the all three predictions as unified mask prediction and classification problem. We design a decoupled decoder to generate part feature and thing/stuff feature respectively. Then we propose to utilize all the queries and corresponding features to perform reasoning jointly and iteratively. The final mask can be obtained via inner product between queries and the corresponding features. The extensive ablation studies and analysis prove the effectiveness of our framework. Our Panoptic-PartFormer achieves the new state-of-the-art results on both Cityscapes PPS and Pascal Context PPS datasets with at least 70% GFlops and 50% parameters decrease. In particular, we get 3.4% relative improvements with ResNet50 backbone and 10% improvements after adopting Swin Transformer on Pascal Context PPS dataset. To the best of our knowledge, we are the first to solve the PPS problem via \textit{a unified and end-to-end transformer model. Given its effectiveness and conceptual simplicity, we hope our Panoptic-PartFormer can serve as a good baseline and aid future unified research for PPS. Our code and models will be available at https://github.com/lxtGH/Panoptic-PartFormer.
Abstract:Human fashion understanding is one important computer vision task since it has the comprehensive information that can be used for real-world applications. In this work, we focus on joint human fashion segmentation and attribute recognition. Contrary to the previous works that separately model each task as a multi-head prediction problem, our insight is to bridge these two tasks with one unified model via vision transformer modeling to benefit each task. In particular, we introduce the object query for segmentation and the attribute query for attribute prediction. Both queries and their corresponding features can be linked via mask prediction. Then we adopt a two-stream query learning framework to learn the decoupled query representations. For attribute stream, we design a novel Multi-Layer Rendering module to explore more fine-grained features. The decoder design shares the same spirits with DETR, thus we name the proposed method Fahsionformer. Extensive experiments on three human fashion datasets including Fashionpedia, ModaNet and Deepfashion illustrate the effectiveness of our approach. In particular, our method with the same backbone achieve relative 10% improvements than previous works in case of \textit{a joint metric ( AP$^{\text{mask}}_{\text{IoU+F}_1}$) for both segmentation and attribute recognition}. To the best of our knowledge, we are the first unified end-to-end vision transformer framework for human fashion analysis. We hope this simple yet effective method can serve as a new flexible baseline for fashion analysis. Code will be available at https://github.com/xushilin1/FashionFormer.
Abstract:In this paper, we investigate the computational resource allocation problem in a distributed Ad-Hoc vehicular network with no centralized infrastructure support. To support the ever increasing computational needs in such a vehicular network, the distributed virtual cloud network (VCN) is formed, based on which a computational resource sharing scheme through offloading among nearby vehicles is proposed. In view of the time-varying computational resource in VCN, the statistical distribution characteristics for computational resource are analyzed in detail. Thereby, a resource-aware combinatorial optimization objective mechanism is proposed. To alleviate the non-stationary environment caused by the typically multi-agent environment in VCN, we adopt a centralized training and decentralized execution framework. In addition, for the objective optimization problem, we model it as a Markov game and propose a DRL based multi-agent deep deterministic reinforcement learning (MADDPG) algorithm to solve it. Interestingly, to overcome the dilemma of lacking a real central control unit in VCN, the allocation is actually completed on the vehicles in a distributed manner. The simulation results are presented to demonstrate our scheme's effectiveness.