Abstract:Recently, large efforts have been made to design efficient linear-complexity visual Transformers. However, current linear attention models are generally unsuitable to be deployed in resource-constrained mobile devices, due to suffering from either few efficiency gains or significant accuracy drops. In this paper, we propose a new de\textbf{C}oupled du\textbf{A}l-interactive linea\textbf{R} att\textbf{E}ntion (CARE) mechanism, revealing that features' decoupling and interaction can fully unleash the power of linear attention. We first propose an asymmetrical feature decoupling strategy that asymmetrically decouples the learning process for local inductive bias and long-range dependencies, thereby preserving sufficient local and global information while effectively enhancing the efficiency of models. Then, a dynamic memory unit is employed to maintain critical information along the network pipeline. Moreover, we design a dual interaction module to effectively facilitate interaction between local inductive bias and long-range information as well as among features at different layers. By adopting a decoupled learning way and fully exploiting complementarity across features, our method can achieve both high efficiency and accuracy. Extensive experiments on ImageNet-1K, COCO, and ADE20K datasets demonstrate the effectiveness of our approach, e.g., achieving $78.4/82.1\%$ top-1 accuracy on ImagegNet-1K at the cost of only $0.7/1.9$ GMACs. Codes will be released on \href{..}{github}.
Abstract:In autonomous driving, 3D LiDAR plays a crucial role in understanding the vehicle's surroundings. However, the newly emerged, unannotated objects presents few-shot learning problem for semantic segmentation. This paper addresses the limitations of current few-shot semantic segmentation by exploiting the temporal continuity of LiDAR data. Employing a tracking model to generate pseudo-ground-truths from a sequence of LiDAR frames, our method significantly augments the dataset, enhancing the model's ability to learn on novel classes. However, this approach introduces a data imbalance biased to novel data that presents a new challenge of catastrophic forgetting. To mitigate this, we incorporate LoRA, a technique that reduces the number of trainable parameters, thereby preserving the model's performance on base classes while improving its adaptability to novel classes. This work represents a significant step forward in few-shot 3D LiDAR semantic segmentation for autonomous driving. Our code is available at https://github.com/junbao-zhou/Track-no-forgetting.
Abstract:With recent video object segmentation (VOS) benchmarks evolving to challenging scenarios, we revisit a simple but overlooked strategy: restricting the size of memory banks. This diverges from the prevalent practice of expanding memory banks to accommodate extensive historical information. Our specially designed "memory deciphering" study offers a pivotal insight underpinning such a strategy: expanding memory banks, while seemingly beneficial, actually increases the difficulty for VOS modules to decode relevant features due to the confusion from redundant information. By restricting memory banks to a limited number of essential frames, we achieve a notable improvement in VOS accuracy. This process balances the importance and freshness of frames to maintain an informative memory bank within a bounded capacity. Additionally, restricted memory banks reduce the training-inference discrepancy in memory lengths compared with continuous expansion. This fosters new opportunities in temporal reasoning and enables us to introduce the previously overlooked "temporal positional embedding." Finally, our insights are embodied in "RMem" ("R" for restricted), a simple yet effective VOS modification that excels at challenging VOS scenarios and establishes new state of the art for object state changes (on the VOST dataset) and long videos (on the Long Videos dataset). Our code and demo are available at https://restricted-memory.github.io/.
Abstract:In autonomous driving, the novel objects and lack of annotations challenge the traditional 3D LiDAR semantic segmentation based on deep learning. Few-shot learning is a feasible way to solve these issues. However, currently few-shot semantic segmentation methods focus on camera data, and most of them only predict the novel classes without considering the base classes. This setting cannot be directly applied to autonomous driving due to safety concerns. Thus, we propose a few-shot 3D LiDAR semantic segmentation method that predicts both novel classes and base classes simultaneously. Our method tries to solve the background ambiguity problem in generalized few-shot semantic segmentation. We first review the original cross-entropy and knowledge distillation losses, then propose a new loss function that incorporates the background information to achieve 3D LiDAR few-shot semantic segmentation. Extensive experiments on SemanticKITTI demonstrate the effectiveness of our method.