Abstract:Recent advancements in multimodal large language models (MLLMs) have shown unprecedented capabilities in advancing various vision-language tasks. However, MLLMs face significant challenges with hallucinations, and misleading outputs that do not align with the input data. While existing efforts are paid to combat MLLM hallucinations, several pivotal challenges are still unsolved. First, while current approaches aggressively focus on addressing errors at the perception level, another important type at the cognition level requiring factual commonsense can be overlooked. In addition, existing methods might fall short in finding a more effective way to represent visual input, which is yet a key bottleneck that triggers visual hallucinations. Moreover, MLLMs can frequently be misled by faulty textual inputs and cause hallucinations, while unfortunately, this type of issue has long been overlooked by existing studies. Inspired by human intuition in handling hallucinations, this paper introduces a novel bottom-up reasoning framework. Our framework systematically addresses potential issues in both visual and textual inputs by verifying and integrating perception-level information with cognition-level commonsense knowledge, ensuring more reliable outputs. Extensive experiments demonstrate significant improvements in multiple hallucination benchmarks after integrating MLLMs with the proposed framework. In-depth analyses reveal the great potential of our methods in addressing perception- and cognition-level hallucinations.
Abstract:While existing Aspect-based Sentiment Analysis (ABSA) has received extensive effort and advancement, there are still gaps in defining a more holistic research target seamlessly integrating multimodality, conversation context, fine-granularity, and also covering the changing sentiment dynamics as well as cognitive causal rationales. This paper bridges the gaps by introducing a multimodal conversational ABSA, where two novel subtasks are proposed: 1) Panoptic Sentiment Sextuple Extraction, panoramically recognizing holder, target, aspect, opinion, sentiment, rationale from multi-turn multi-party multimodal dialogue. 2) Sentiment Flipping Analysis, detecting the dynamic sentiment transformation throughout the conversation with the causal reasons. To benchmark the tasks, we construct PanoSent, a dataset annotated both manually and automatically, featuring high quality, large scale, multimodality, multilingualism, multi-scenarios, and covering both implicit and explicit sentiment elements. To effectively address the tasks, we devise a novel Chain-of-Sentiment reasoning framework, together with a novel multimodal large language model (namely Sentica) and a paraphrase-based verification mechanism. Extensive evaluations demonstrate the superiority of our methods over strong baselines, validating the efficacy of all our proposed methods. The work is expected to open up a new era for the ABSA community, and thus all our codes and data are open at https://PanoSent.github.io/
Abstract:While pre-training large-scale video-language models (VLMs) has shown remarkable potential for various downstream video-language tasks, existing VLMs can still suffer from certain commonly seen limitations, e.g., coarse-grained cross-modal aligning , under-modeling of temporal dynamics, detached video-language view. In this work, we target enhancing VLMs with a fine-grained structural spatio-temporal alignment learning method (namely Finsta). First of all, we represent the input texts and videos with fine-grained scene graph (SG) structures, both of which are further unified into a holistic SG (HSG) for bridging two modalities. Then, an SG-based framework is built, where the textual SG (TSG) is encoded with a graph Transformer, while the video dynamic SG (DSG) and the HSG are modeled with a novel recurrent graph Transformer for spatial and temporal feature propagation. A spatial-temporal Gaussian differential graph Transformer is further devised to strengthen the sense of the changes in objects across spatial and temporal dimensions. Next, based on the fine-grained structural features of TSG and DSG, we perform object-centered spatial alignment and predicate-centered temporal alignment respectively, enhancing the video-language grounding in both the spatiality and temporality. We design our method as a plug&play system, which can be integrated into existing well-trained VLMs for further representation augmentation, without training from scratch or relying on SG annotations in downstream applications. On 6 representative VL modeling tasks over 12 datasets in both standard and long-form video scenarios, Finsta consistently improves the existing 13 strong-performing VLMs persistently, and refreshes the current state-of-the-art end task performance significantly in both the fine-tuning and zero-shot settings.
Abstract:Current universal segmentation methods demonstrate strong capabilities in pixel-level image and video understanding. However, they lack reasoning abilities and cannot be controlled via text instructions. In contrast, large vision-language multimodal models exhibit powerful vision-based conversation and reasoning capabilities but lack pixel-level understanding and have difficulty accepting visual prompts for flexible user interaction. This paper proposes OMG-LLaVA, a new and elegant framework combining powerful pixel-level vision understanding with reasoning abilities. It can accept various visual and text prompts for flexible user interaction. Specifically, we use a universal segmentation method as the visual encoder, integrating image information, perception priors, and visual prompts into visual tokens provided to the LLM. The LLM is responsible for understanding the user's text instructions and providing text responses and pixel-level segmentation results based on the visual information. We propose perception prior embedding to better integrate perception priors with image features. OMG-LLaVA achieves image-level, object-level, and pixel-level reasoning and understanding in a single model, matching or surpassing the performance of specialized methods on multiple benchmarks. Rather than using LLM to connect each specialist, our work aims at end-to-end training on one encoder, one decoder, and one LLM. The code and model have been released for further research.
Abstract:Multimodal Large Language Models (MLLMs) have demonstrated exceptional capabilities in processing vision-language tasks. One of the crux of MLLMs lies in vision tokenization, which involves efficiently transforming input visual signals into feature representations that are most beneficial for LLMs. However, existing vision tokenizers, essential for semantic alignment between vision and language, remain problematic. Existing methods aggressively fragment visual input, corrupting the visual semantic integrity. To address this, this paper proposes a novel dynamic Semantic-Equivalent Vision Tokenizer (SeTok), which groups visual features into semantic units via a dynamic clustering algorithm, flexibly determining the number of tokens based on image complexity. The resulting vision tokens effectively preserve semantic integrity and capture both low-frequency and high-frequency visual features. The proposed MLLM (Setokim) equipped with SeTok significantly demonstrates superior performance across various tasks, as evidenced by our experimental results. The project page is at https://chocowu.github.io/SeTok-web/.
Abstract:Headline generation aims to summarize a long document with a short, catchy title that reflects the main idea. This requires accurately capturing the core document semantics, which is challenging due to the lengthy and background information-rich na ture of the texts. In this work, We propose using a unified semantic discourse structure (S3) to represent document semantics, achieved by combining document-level rhetorical structure theory (RST) trees with sentence-level abstract meaning representation (AMR) graphs to construct S3 graphs. The hierarchical composition of sentence, clause, and word intrinsically characterizes the semantic meaning of the overall document. We then develop a headline generation framework, in which the S3 graphs are encoded as contextual features. To consolidate the efficacy of S3 graphs, we further devise a hierarchical structure pruning mechanism to dynamically screen the redundant and nonessential nodes within the graph. Experimental results on two headline generation datasets demonstrate that our method outperforms existing state-of-art methods consistently. Our work can be instructive for a broad range of document modeling tasks, more than headline or summarization generation.
Abstract:While recently Multimodal Large Language Models (MM-LLMs) have made exciting strides, they mostly fall prey to the limitation of only input-side multimodal understanding, without the ability to produce content in multiple modalities. As we humans always perceive the world and communicate with people through various modalities, developing any-to-any MM-LLMs capable of accepting and delivering content in any modality becomes essential to human-level AI. To fill the gap, we present an end-to-end general-purpose any-to-any MM-LLM system, NExT-GPT. We connect an LLM with multimodal adaptors and different diffusion decoders, enabling NExT-GPT to perceive inputs and generate outputs in arbitrary combinations of text, images, videos, and audio. By leveraging the existing well-trained highly-performing encoders and decoders, NExT-GPT is tuned with only a small amount of parameter (1%) of certain projection layers, which not only benefits low-cost training and also facilitates convenient expansion to more potential modalities. Moreover, we introduce a modality-switching instruction tuning (MosIT) and manually curate a high-quality dataset for MosIT, based on which NExT-GPT is empowered with complex cross-modal semantic understanding and content generation. Overall, our research showcases the promising possibility of building an AI agent capable of modeling universal modalities, paving the way for more human-like AI research in the community. Project page: https://next-gpt.github.io/
Abstract:Text-to-video (T2V) synthesis has gained increasing attention in the community, in which the recently emerged diffusion models (DMs) have promisingly shown stronger performance than the past approaches. While existing state-of-the-art DMs are competent to achieve high-resolution video generation, they may largely suffer from key limitations (e.g., action occurrence disorders, crude video motions) with respect to the intricate temporal dynamics modeling, one of the crux of video synthesis. In this work, we investigate strengthening the awareness of video dynamics for DMs, for high-quality T2V generation. Inspired by human intuition, we design an innovative dynamic scene manager (dubbed as Dysen) module, which includes (step-1) extracting from input text the key actions with proper time-order arrangement, (step-2) transforming the action schedules into the dynamic scene graph (DSG) representations, and (step-3) enriching the scenes in the DSG with sufficient and reasonable details. Taking advantage of the existing powerful LLMs (e.g., ChatGPT) via in-context learning, Dysen realizes (nearly) human-level temporal dynamics understanding. Finally, the resulting video DSG with rich action scene details is encoded as fine-grained spatio-temporal features, integrated into the backbone T2V DM for video generating. Experiments on popular T2V datasets suggest that our framework consistently outperforms prior arts with significant margins, especially in the scenario with complex actions. Project page at https://haofei.vip/Dysen-VDM
Abstract:In the text-to-image generation field, recent remarkable progress in Stable Diffusion makes it possible to generate rich kinds of novel photorealistic images. However, current models still face misalignment issues (e.g., problematic spatial relation understanding and numeration failure) in complex natural scenes, which impedes the high-faithfulness text-to-image generation. Although recent efforts have been made to improve controllability by giving fine-grained guidance (e.g., sketch and scribbles), this issue has not been fundamentally tackled since users have to provide such guidance information manually. In this work, we strive to synthesize high-fidelity images that are semantically aligned with a given textual prompt without any guidance. Toward this end, we propose a coarse-to-fine paradigm to achieve layout planning and image generation. Concretely, we first generate the coarse-grained layout conditioned on a given textual prompt via in-context learning based on Large Language Models. Afterward, we propose a fine-grained object-interaction diffusion method to synthesize high-faithfulness images conditioned on the prompt and the automatically generated layout. Extensive experiments demonstrate that our proposed method outperforms the state-of-the-art models in terms of layout and image generation. Our code and settings are available at https://layoutllm-t2i.github.io.
Abstract:Dialogue relation extraction (DRE) that identifies the relations between argument pairs in dialogue text, suffers much from the frequent occurrence of personal pronouns, or entity and speaker coreference. This work introduces a new benchmark dataset DialogRE^C+, introducing coreference resolution into the DRE scenario. With the aid of high-quality coreference knowledge, the reasoning of argument relations is expected to be enhanced. In DialogRE^C+ dataset, we manually annotate total 5,068 coreference chains over 36,369 argument mentions based on the existing DialogRE data, where four different coreference chain types namely speaker chain, person chain, location chain and organization chain are explicitly marked. We further develop 4 coreference-enhanced graph-based DRE models, which learn effective coreference representations for improving the DRE task. We also train a coreference resolution model based on our annotations and evaluate the effect of automatically extracted coreference chains demonstrating the practicality of our dataset and its potential to other domains and tasks.