Abstract:This paper introduces JavisDiT, a novel Joint Audio-Video Diffusion Transformer designed for synchronized audio-video generation (JAVG). Built upon the powerful Diffusion Transformer (DiT) architecture, JavisDiT is able to generate high-quality audio and video content simultaneously from open-ended user prompts. To ensure optimal synchronization, we introduce a fine-grained spatio-temporal alignment mechanism through a Hierarchical Spatial-Temporal Synchronized Prior (HiST-Sypo) Estimator. This module extracts both global and fine-grained spatio-temporal priors, guiding the synchronization between the visual and auditory components. Furthermore, we propose a new benchmark, JavisBench, consisting of 10,140 high-quality text-captioned sounding videos spanning diverse scenes and complex real-world scenarios. Further, we specifically devise a robust metric for evaluating the synchronization between generated audio-video pairs in real-world complex content. Experimental results demonstrate that JavisDiT significantly outperforms existing methods by ensuring both high-quality generation and precise synchronization, setting a new standard for JAVG tasks. Our code, model, and dataset will be made publicly available at https://javisdit.github.io/.
Abstract:Open-vocabulary object detection (OVOD) aims at localizing and recognizing visual objects from novel classes unseen at the training time. Whereas, empirical studies reveal that advanced detectors generally assign lower scores to those novel instances, which are inadvertently suppressed during inference by commonly adopted greedy strategies like Non-Maximum Suppression (NMS), leading to sub-optimal detection performance for novel classes. This paper systematically investigates this problem with the commonly-adopted two-stage OVOD paradigm. Specifically, in the region-proposal stage, proposals that contain novel instances showcase lower objectness scores, since they are treated as background proposals during the training phase. Meanwhile, in the object-classification stage, novel objects share lower region-text similarities (i.e., classification scores) due to the biased visual-language alignment by seen training samples. To alleviate this problem, this paper introduces two advanced measures to adjust confidence scores and conserve erroneously dismissed objects: (1) a class-agnostic localization quality estimate via overlap degree of region/object proposals, and (2) a text-guided visual similarity estimate with proxy prototypes for novel classes. Integrated with adjusting techniques specifically designed for the region-proposal and object-classification stages, this paper derives the aggregated confidence estimate for the open-vocabulary object detection paradigm (AggDet). Our AggDet is a generic and training-free post-processing scheme, which consistently bolsters open-vocabulary detectors across model scales and architecture designs. For instance, AggDet receives 3.3% and 1.5% gains on OV-COCO and OV-LVIS benchmarks respectively, without any training cost.