Abstract:Three key challenges hinder the development of current deepfake video detection: (1) Temporal features can be complex and diverse: how can we identify general temporal artifacts to enhance model generalization? (2) Spatiotemporal models often lean heavily on one type of artifact and ignore the other: how can we ensure balanced learning from both? (3) Videos are naturally resource-intensive: how can we tackle efficiency without compromising accuracy? This paper attempts to tackle the three challenges jointly. First, inspired by the notable generality of using image-level blending data for image forgery detection, we investigate whether and how video-level blending can be effective in video. We then perform a thorough analysis and identify a previously underexplored temporal forgery artifact: Facial Feature Drift (FFD), which commonly exists across different forgeries. To reproduce FFD, we then propose a novel Video-level Blending data (VB), where VB is implemented by blending the original image and its warped version frame-by-frame, serving as a hard negative sample to mine more general artifacts. Second, we carefully design a lightweight Spatiotemporal Adapter (StA) to equip a pretrained image model (both ViTs and CNNs) with the ability to capture both spatial and temporal features jointly and efficiently. StA is designed with two-stream 3D-Conv with varying kernel sizes, allowing it to process spatial and temporal features separately. Extensive experiments validate the effectiveness of the proposed methods; and show our approach can generalize well to previously unseen forgery videos, even the just-released (in 2024) SoTAs. We release our code and pretrained weights at \url{https://github.com/YZY-stack/StA4Deepfake}.
Abstract:We propose a new comprehensive benchmark to revolutionize the current deepfake detection field to the next generation. Predominantly, existing works identify top-notch detection algorithms and models by adhering to the common practice: training detectors on one specific dataset (e.g., FF++) and testing them on other prevalent deepfake datasets. This protocol is often regarded as a "golden compass" for navigating SoTA detectors. But can these stand-out "winners" be truly applied to tackle the myriad of realistic and diverse deepfakes lurking in the real world? If not, what underlying factors contribute to this gap? In this work, we found the dataset (both train and test) can be the "primary culprit" due to: (1) forgery diversity: Deepfake techniques are commonly referred to as both face forgery (face-swapping and face-reenactment) and entire image synthesis (AIGC). Most existing datasets only contain partial types, with limited forgery methods implemented; (2) forgery realism: The dominant training dataset, FF++, contains old forgery techniques from the past five years. "Honing skills" on these forgeries makes it difficult to guarantee effective detection of nowadays' SoTA deepfakes; (3) evaluation protocol: Most detection works perform evaluations on one type, e.g., train and test on face-swapping only, which hinders the development of universal deepfake detectors. To address this dilemma, we construct a highly diverse and large-scale deepfake dataset called DF40, which comprises 40 distinct deepfake techniques. We then conduct comprehensive evaluations using 4 standard evaluation protocols and 7 representative detectors, resulting in over 2,000 evaluations. Through these evaluations, we analyze from various perspectives, leading to 12 new insightful findings contributing to the field. We also open up 5 valuable yet previously underexplored research questions to inspire future works.
Abstract:In this paper, we propose a simple yet effective transformer framework for self-supervised learning called DenseDINO to learn dense visual representations. To exploit the spatial information that the dense prediction tasks require but neglected by the existing self-supervised transformers, we introduce point-level supervision across views in a novel token-based way. Specifically, DenseDINO introduces some extra input tokens called reference tokens to match the point-level features with the position prior. With the reference token, the model could maintain spatial consistency and deal with multi-object complex scene images, thus generalizing better on dense prediction tasks. Compared with the vanilla DINO, our approach obtains competitive performance when evaluated on classification in ImageNet and achieves a large margin (+7.2% mIoU) improvement in semantic segmentation on PascalVOC under the linear probing protocol for segmentation.
Abstract:Recent years have witnessed a great development of Convolutional Neural Networks in semantic segmentation, where all classes of training images are simultaneously available. In practice, new images are usually made available in a consecutive manner, leading to a problem called Continual Semantic Segmentation (CSS). Typically, CSS faces the forgetting problem since previous training images are unavailable, and the semantic shift problem of the background class. Considering the semantic segmentation as a context-dependent pixel-level classification task, we explore CSS from a new perspective of context analysis in this paper. We observe that the context of old-class pixels in the new images is much more biased on new classes than that in the old images, which can sharply aggravate the old-class forgetting and new-class overfitting. To tackle the obstacle, we propose a biased-context-rectified CSS framework with a context-rectified image-duplet learning scheme and a biased-context-insensitive consistency loss. Furthermore, we propose an adaptive re-weighting class-balanced learning strategy for the biased class distribution. Our approach outperforms state-of-the-art methods by a large margin in existing CSS scenarios.