Abstract:Spatial intelligence is foundational to AI systems that interact with the physical world, particularly in 3D scene generation and spatial comprehension. Current methodologies for 3D scene generation often rely heavily on predefined datasets, and struggle to adapt dynamically to changing spatial relationships. In this paper, we introduce \textbf{GraphCanvas3D}, a programmable, extensible, and adaptable framework for controllable 3D scene generation. Leveraging in-context learning, GraphCanvas3D enables dynamic adaptability without the need for retraining, supporting flexible and customizable scene creation. Our framework employs hierarchical, graph-driven scene descriptions, representing spatial elements as graph nodes and establishing coherent relationships among objects in 3D environments. Unlike conventional approaches, which are constrained in adaptability and often require predefined input masks or retraining for modifications, GraphCanvas3D allows for seamless object manipulation and scene adjustments on the fly. Additionally, GraphCanvas3D supports 4D scene generation, incorporating temporal dynamics to model changes over time. Experimental results and user studies demonstrate that GraphCanvas3D enhances usability, flexibility, and adaptability for scene generation. Our code and models are available on the project website: https://github.com/ILGLJ/Graph-Canvas.
Abstract:Existing AI-generated image (AIGI) detection methods often suffer from limited generalization performance. In this paper, we identify a crucial yet previously overlooked asymmetry phenomenon in AIGI detection: during training, models tend to quickly overfit to specific fake patterns in the training set, while other information is not adequately captured, leading to poor generalization when faced with new fake methods. A key insight is to incorporate the rich semantic knowledge embedded within large-scale vision foundation models (VFMs) to expand the previous discriminative space (based on forgery patterns only), such that the discrimination is decided by both forgery and semantic cues, thereby reducing the overfitting to specific forgery patterns. A straightforward solution is to fully fine-tune VFMs, but it risks distorting the well-learned semantic knowledge, pushing the model back toward overfitting. To this end, we design a novel approach called Effort: Efficient orthogonal modeling for generalizable AIGI detection. Specifically, we employ Singular Value Decomposition (SVD) to construct the orthogonal semantic and forgery subspaces. By freezing the principal components and adapting the residual components ($\sim$0.19M parameters), we preserve the original semantic subspace and use its orthogonal subspace for learning forgeries. Extensive experiments on AIGI detection benchmarks demonstrate the superior effectiveness of our approach.
Abstract:This paper addresses the generalization issue in deepfake detection by harnessing forgery quality in training data. Generally, the forgery quality of different deepfakes varies: some have easily recognizable forgery clues, while others are highly realistic. Existing works often train detectors on a mix of deepfakes with varying forgery qualities, potentially leading detectors to short-cut the easy-to-spot artifacts from low-quality forgery samples, thereby hurting generalization performance. To tackle this issue, we propose a novel quality-centric framework for generic deepfake detection, which is composed of a Quality Evaluator, a low-quality data enhancement module, and a learning pacing strategy that explicitly incorporates forgery quality into the training process. The framework is inspired by curriculum learning, which is designed to gradually enable the detector to learn more challenging deepfake samples, starting with easier samples and progressing to more realistic ones. We employ both static and dynamic assessments to assess the forgery quality, combining their scores to produce a final rating for each training sample. The rating score guides the selection of deepfake samples for training, with higher-rated samples having a higher probability of being chosen. Furthermore, we propose a novel frequency data augmentation method specifically designed for low-quality forgery samples, which helps to reduce obvious forgery traces and improve their overall realism. Extensive experiments show that our method can be applied in a plug-and-play manner and significantly enhance the generalization performance.
Abstract:The rapid progress of Deepfake technology has made face swapping highly realistic, raising concerns about the malicious use of fabricated facial content. Existing methods often struggle to generalize to unseen domains due to the diverse nature of facial manipulations. In this paper, we revisit the generation process and identify a universal principle: Deepfake images inherently contain information from both source and target identities, while genuine faces maintain a consistent identity. Building upon this insight, we introduce DiffusionFake, a novel plug-and-play framework that reverses the generative process of face forgeries to enhance the generalization of detection models. DiffusionFake achieves this by injecting the features extracted by the detection model into a frozen pre-trained Stable Diffusion model, compelling it to reconstruct the corresponding target and source images. This guided reconstruction process constrains the detection network to capture the source and target related features to facilitate the reconstruction, thereby learning rich and disentangled representations that are more resilient to unseen forgeries. Extensive experiments demonstrate that DiffusionFake significantly improves cross-domain generalization of various detector architectures without introducing additional parameters during inference. Our Codes are available in https://github.com/skJack/DiffusionFake.git.
Abstract:3D Gaussian Splatting (3DGS) has emerged as a promising approach for 3D scene representation, offering a reduction in computational overhead compared to Neural Radiance Fields (NeRF). However, 3DGS is susceptible to high-frequency artifacts and demonstrates suboptimal performance under sparse viewpoint conditions, thereby limiting its applicability in robotics and computer vision. To address these limitations, we introduce SVS-GS, a novel framework for Sparse Viewpoint Scene reconstruction that integrates a 3D Gaussian smoothing filter to suppress artifacts. Furthermore, our approach incorporates a Depth Gradient Profile Prior (DGPP) loss with a dynamic depth mask to sharpen edges and 2D diffusion with Score Distillation Sampling (SDS) loss to enhance geometric consistency in novel view synthesis. Experimental evaluations on the MipNeRF-360 and SeaThru-NeRF datasets demonstrate that SVS-GS markedly improves 3D reconstruction from sparse viewpoints, offering a robust and efficient solution for scene understanding in robotics and computer vision applications.
Abstract:Three key challenges hinder the development of current deepfake video detection: (1) Temporal features can be complex and diverse: how can we identify general temporal artifacts to enhance model generalization? (2) Spatiotemporal models often lean heavily on one type of artifact and ignore the other: how can we ensure balanced learning from both? (3) Videos are naturally resource-intensive: how can we tackle efficiency without compromising accuracy? This paper attempts to tackle the three challenges jointly. First, inspired by the notable generality of using image-level blending data for image forgery detection, we investigate whether and how video-level blending can be effective in video. We then perform a thorough analysis and identify a previously underexplored temporal forgery artifact: Facial Feature Drift (FFD), which commonly exists across different forgeries. To reproduce FFD, we then propose a novel Video-level Blending data (VB), where VB is implemented by blending the original image and its warped version frame-by-frame, serving as a hard negative sample to mine more general artifacts. Second, we carefully design a lightweight Spatiotemporal Adapter (StA) to equip a pretrained image model (both ViTs and CNNs) with the ability to capture both spatial and temporal features jointly and efficiently. StA is designed with two-stream 3D-Conv with varying kernel sizes, allowing it to process spatial and temporal features separately. Extensive experiments validate the effectiveness of the proposed methods; and show our approach can generalize well to previously unseen forgery videos, even the just-released (in 2024) SoTAs. We release our code and pretrained weights at \url{https://github.com/YZY-stack/StA4Deepfake}.
Abstract:The creation of high-quality 3D assets is paramount for applications in digital heritage preservation, entertainment, and robotics. Traditionally, this process necessitates skilled professionals and specialized software for the modeling, texturing, and rendering of 3D objects. However, the rising demand for 3D assets in gaming and virtual reality (VR) has led to the creation of accessible image-to-3D technologies, allowing non-professionals to produce 3D content and decreasing dependence on expert input. Existing methods for 3D content generation struggle to simultaneously achieve detailed textures and strong geometric consistency. We introduce a novel 3D content creation framework, ScalingGaussian, which combines 3D and 2D diffusion models to achieve detailed textures and geometric consistency in generated 3D assets. Initially, a 3D diffusion model generates point clouds, which are then densified through a process of selecting local regions, introducing Gaussian noise, followed by using local density-weighted selection. To refine the 3D gaussians, we utilize a 2D diffusion model with Score Distillation Sampling (SDS) loss, guiding the 3D Gaussians to clone and split. Finally, the 3D Gaussians are converted into meshes, and the surface textures are optimized using Mean Square Error(MSE) and Gradient Profile Prior(GPP) losses. Our method addresses the common issue of sparse point clouds in 3D diffusion, resulting in improved geometric structure and detailed textures. Experiments on image-to-3D tasks demonstrate that our approach efficiently generates high-quality 3D assets.
Abstract:We propose a new comprehensive benchmark to revolutionize the current deepfake detection field to the next generation. Predominantly, existing works identify top-notch detection algorithms and models by adhering to the common practice: training detectors on one specific dataset (e.g., FF++) and testing them on other prevalent deepfake datasets. This protocol is often regarded as a "golden compass" for navigating SoTA detectors. But can these stand-out "winners" be truly applied to tackle the myriad of realistic and diverse deepfakes lurking in the real world? If not, what underlying factors contribute to this gap? In this work, we found the dataset (both train and test) can be the "primary culprit" due to: (1) forgery diversity: Deepfake techniques are commonly referred to as both face forgery (face-swapping and face-reenactment) and entire image synthesis (AIGC). Most existing datasets only contain partial types, with limited forgery methods implemented; (2) forgery realism: The dominant training dataset, FF++, contains old forgery techniques from the past five years. "Honing skills" on these forgeries makes it difficult to guarantee effective detection of nowadays' SoTA deepfakes; (3) evaluation protocol: Most detection works perform evaluations on one type, e.g., train and test on face-swapping only, which hinders the development of universal deepfake detectors. To address this dilemma, we construct a highly diverse and large-scale deepfake dataset called DF40, which comprises 40 distinct deepfake techniques. We then conduct comprehensive evaluations using 4 standard evaluation protocols and 7 representative detectors, resulting in over 2,000 evaluations. Through these evaluations, we analyze from various perspectives, leading to 12 new insightful findings contributing to the field. We also open up 5 valuable yet previously underexplored research questions to inspire future works.
Abstract:Face swapping has become a prominent research area in computer vision and image processing due to rapid technological advancements. The metric of measuring the quality in most face swapping methods relies on several distances between the manipulated images and the source image, or the target image, i.e., there are suitable known reference face images. Therefore, there is still a gap in accurately assessing the quality of face interchange in reference-free scenarios. In this study, we present a novel no-reference image quality assessment (NR-IQA) method specifically designed for face swapping, addressing this issue by constructing a comprehensive large-scale dataset, implementing a method for ranking image quality based on multiple facial attributes, and incorporating a Siamese network based on interpretable qualitative comparisons. Our model demonstrates the state-of-the-art performance in the quality assessment of swapped faces, providing coarse- and fine-grained. Enhanced by this metric, an improved face-swapping model achieved a more advanced level with respect to expressions and poses. Extensive experiments confirm the superiority of our method over existing general no-reference image quality assessment metrics and the latest metric of facial image quality assessment, making it well suited for evaluating face swapping images in real-world scenarios.
Abstract:The challenge in sourcing attribution for forgery faces has gained widespread attention due to the rapid development of generative techniques. While many recent works have taken essential steps on GAN-generated faces, more threatening attacks related to identity swapping or expression transferring are still overlooked. And the forgery traces hidden in unknown attacks from the open-world unlabeled faces still remain under-explored. To push the related frontier research, we introduce a new benchmark called Open-World DeepFake Attribution (OW-DFA), which aims to evaluate attribution performance against various types of fake faces under open-world scenarios. Meanwhile, we propose a novel framework named Contrastive Pseudo Learning (CPL) for the OW-DFA task through 1) introducing a Global-Local Voting module to guide the feature alignment of forged faces with different manipulated regions, 2) designing a Confidence-based Soft Pseudo-label strategy to mitigate the pseudo-noise caused by similar methods in unlabeled set. In addition, we extend the CPL framework with a multi-stage paradigm that leverages pre-train technique and iterative learning to further enhance traceability performance. Extensive experiments verify the superiority of our proposed method on the OW-DFA and also demonstrate the interpretability of deepfake attribution task and its impact on improving the security of deepfake detection area.