Abstract:The human ear offers a unique opportunity for cardiac monitoring due to its physiological and practical advantages. However, existing earable solutions require additional hardware and complex processing, posing challenges for commercial True Wireless Stereo (TWS) earbuds which are limited by their form factor and resources. In this paper, we propose TWSCardio, a novel system that repurposes the IMU sensors in TWS earbuds for cardiac monitoring. Our key finding is that these sensors can capture in-ear ballistocardiogram (BCG) signals. TWSCardio reuses the unstable Bluetooth channel to stream the IMU data to a smartphone for BCG processing. It incorporates a signal enhancement framework to address issues related to missing data and low sampling rate, while mitigating motion artifacts by fusing multi-axis information. Furthermore, it employs a region-focused signal reconstruction method to translate the multi-axis in-ear BCG signals into fine-grained seismocardiogram (SCG) signals. We have implemented TWSCardio as an efficient real-time app. Our experiments on 100 subjects verify that TWSCardio can accurately reconstruct cardiac signals while showing resilience to motion artifacts, missing data, and low sampling rates. Our case studies further demonstrate that TWSCardio can support diverse cardiac monitoring applications.
Abstract:Reasoning is fundamental to human intelligence, and critical for problem-solving, decision-making, and critical thinking. Reasoning refers to drawing new conclusions based on existing knowledge, which can support various applications like clinical diagnosis, basic education, and financial analysis. Though a good number of surveys have been proposed for reviewing reasoning-related methods, none of them has systematically investigated these methods from the viewpoint of their dependent knowledge base. Both the scenarios to which the knowledge bases are applied and their storage formats are significantly different. Hence, investigating reasoning methods from the knowledge base perspective helps us better understand the challenges and future directions. To fill this gap, this paper first classifies the knowledge base into symbolic and parametric ones. The former explicitly stores information in human-readable symbols, and the latter implicitly encodes knowledge within parameters. Then, we provide a comprehensive overview of reasoning methods using symbolic knowledge bases, parametric knowledge bases, and both of them. Finally, we identify the future direction toward enhancing reasoning capabilities to bridge the gap between human and machine intelligence.
Abstract:Data injection attacks (DIAs) pose a significant cybersecurity threat to the Smart Grid by enabling an attacker to compromise the integrity of data acquisition and manipulate estimated states without triggering bad data detection procedures. To mitigate this vulnerability, the moving target defense (MTD) alters branch admittances to mismatch the system information that is available to an attacker, thereby inducing an imperfect DIA construction that results in degradation of attack performance. In this paper, we first analyze the existence of stealth attacks for the case in which the MTD strategy only changes the admittance of a single branch. Equipped with this initial insight, we then extend the results to the case in which multiple branches are protected by the MTD strategy. Remarkably, we show that stealth attacks can be constructed with information only about which branches are protected, without knowledge about the particular admittance value changes. Furthermore, we provide a sufficient protection condition for the MTD strategy via graph-theoretic tools that guarantee that the system is not vulnerable to DIAs. Numerical simulations are implemented on IEEE test systems to validate the obtained results.
Abstract:Vibrometry-based side channels pose a significant privacy risk, exploiting sensors like mmWave radars, light sensors, and accelerometers to detect vibrations from sound sources or proximate objects, enabling speech eavesdropping. Despite various proposed defenses, these involve costly hardware solutions with inherent physical limitations. This paper presents EveGuard, a software-driven defense framework that creates adversarial audio, protecting voice privacy from side channels without compromising human perception. We leverage the distinct sensing capabilities of side channels and traditional microphones where side channels capture vibrations and microphones record changes in air pressure, resulting in different frequency responses. EveGuard first proposes a perturbation generator model (PGM) that effectively suppresses sensor-based eavesdropping while maintaining high audio quality. Second, to enable end-to-end training of PGM, we introduce a new domain translation task called Eve-GAN for inferring an eavesdropped signal from a given audio. We further apply few-shot learning to mitigate the data collection overhead for Eve-GAN training. Our extensive experiments show that EveGuard achieves a protection rate of more than 97 percent from audio classifiers and significantly hinders eavesdropped audio reconstruction. We further validate the performance of EveGuard across three adaptive attack mechanisms. We have conducted a user study to verify the perceptual quality of our perturbed audio.
Abstract:The rapid progress of Deepfake technology has made face swapping highly realistic, raising concerns about the malicious use of fabricated facial content. Existing methods often struggle to generalize to unseen domains due to the diverse nature of facial manipulations. In this paper, we revisit the generation process and identify a universal principle: Deepfake images inherently contain information from both source and target identities, while genuine faces maintain a consistent identity. Building upon this insight, we introduce DiffusionFake, a novel plug-and-play framework that reverses the generative process of face forgeries to enhance the generalization of detection models. DiffusionFake achieves this by injecting the features extracted by the detection model into a frozen pre-trained Stable Diffusion model, compelling it to reconstruct the corresponding target and source images. This guided reconstruction process constrains the detection network to capture the source and target related features to facilitate the reconstruction, thereby learning rich and disentangled representations that are more resilient to unseen forgeries. Extensive experiments demonstrate that DiffusionFake significantly improves cross-domain generalization of various detector architectures without introducing additional parameters during inference. Our Codes are available in https://github.com/skJack/DiffusionFake.git.
Abstract:The rapid development of large language models (LLMs) has significantly advanced code completion capabilities, giving rise to a new generation of LLM-based Code Completion Tools (LCCTs). Unlike general-purpose LLMs, these tools possess unique workflows, integrating multiple information sources as input and prioritizing code suggestions over natural language interaction, which introduces distinct security challenges. Additionally, LCCTs often rely on proprietary code datasets for training, raising concerns about the potential exposure of sensitive data. This paper exploits these distinct characteristics of LCCTs to develop targeted attack methodologies on two critical security risks: jailbreaking and training data extraction attacks. Our experimental results expose significant vulnerabilities within LCCTs, including a 99.4% success rate in jailbreaking attacks on GitHub Copilot and a 46.3% success rate on Amazon Q. Furthermore, We successfully extracted sensitive user data from GitHub Copilot, including 54 real email addresses and 314 physical addresses associated with GitHub usernames. Our study also demonstrates that these code-based attack methods are effective against general-purpose LLMs, such as the GPT series, highlighting a broader security misalignment in the handling of code by modern LLMs. These findings underscore critical security challenges associated with LCCTs and suggest essential directions for strengthening their security frameworks. The example code and attack samples from our research are provided at https://github.com/Sensente/Security-Attacks-on-LCCTs.
Abstract:The rapid progress in generative models has given rise to the critical task of AI-Generated Content Stealth (AIGC-S), which aims to create AI-generated images that can evade both forensic detectors and human inspection. This task is crucial for understanding the vulnerabilities of existing detection methods and developing more robust techniques. However, current adversarial attacks often introduce visible noise, have poor transferability, and fail to address spectral differences between AI-generated and genuine images. To address this, we propose StealthDiffusion, a framework based on stable diffusion that modifies AI-generated images into high-quality, imperceptible adversarial examples capable of evading state-of-the-art forensic detectors. StealthDiffusion comprises two main components: Latent Adversarial Optimization, which generates adversarial perturbations in the latent space of stable diffusion, and Control-VAE, a module that reduces spectral differences between the generated adversarial images and genuine images without affecting the original diffusion model's generation process. Extensive experiments show that StealthDiffusion is effective in both white-box and black-box settings, transforming AI-generated images into high-quality adversarial forgeries with frequency spectra similar to genuine images. These forgeries are classified as genuine by advanced forensic classifiers and are difficult for humans to distinguish.
Abstract:Sparse query-based paradigms have achieved significant success in multi-view 3D detection for autonomous vehicles. Current research faces challenges in balancing between enlarging receptive fields and reducing interference when aggregating multi-view features. Moreover, different poses of cameras present challenges in training global attention models. To address these problems, this paper proposes a divided view method, in which features are modeled globally via the visibility crossattention mechanism, but interact only with partial features in a divided local virtual space. This effectively reduces interference from other irrelevant features and alleviates the training difficulties of the transformer by decoupling the position embedding from camera poses. Additionally, 2D historical RoI features are incorporated into the object-centric temporal modeling to utilize highlevel visual semantic information. The model is trained using a one-to-many assignment strategy to facilitate stability. Our framework, named DVPE, achieves state-of-the-art performance (57.2% mAP and 64.5% NDS) on the nuScenes test set. Codes will be available at https://github.com/dop0/DVPE.
Abstract:Virtual Try-On (VTON) has become a transformative technology, empowering users to experiment with fashion without ever having to physically try on clothing. However, existing methods often struggle with generating high-fidelity and detail-consistent results. While diffusion models, such as Stable Diffusion series, have shown their capability in creating high-quality and photorealistic images, they encounter formidable challenges in conditional generation scenarios like VTON. Specifically, these models struggle to maintain a balance between control and consistency when generating images for virtual clothing trials. OutfitAnyone addresses these limitations by leveraging a two-stream conditional diffusion model, enabling it to adeptly handle garment deformation for more lifelike results. It distinguishes itself with scalability-modulating factors such as pose, body shape and broad applicability, extending from anime to in-the-wild images. OutfitAnyone's performance in diverse scenarios underscores its utility and readiness for real-world deployment. For more details and animated results, please see \url{https://humanaigc.github.io/outfit-anyone/}.
Abstract:Despite the advances in Large Language Models (LLMs), exemplified by models like GPT-4 and Claude, smaller-scale LLMs such as Llama and Mistral often struggle with generating in-depth and coherent dialogues. This paper presents a novel two-step Coarse-to-Fine Actor model to address the inherent limitations in conversational and analytical capabilities of small-sized LLMs. Our approach begins with the Policy-based Coarse Actor, employing a technique we term "Continuous Maximization". The Coarse Actor establishes an enhanced, knowledge-rich pool adept at aligning with human preference styles in analysis and reasoning. Through the RLHF process, it employs Continuous Maximization, a strategy that dynamically and adaptively extends the output length limit, enabling the generation of more detailed and analytical content. Subsequently, the Fine Actor refines this analytical content, addressing the generation of excessively redundant information from the Coarse Actor. We introduce a "Knowledge Residue Merger" approach, refining the content from the Coarse Actor and merging it with an existing Instruction model to improve quality, correctness, and reduce redundancies. We applied our methodology to the popular Mistral model, creating Mistral-C2F, which has demonstrated exceptional performance across 11 general language tasks and the MT-Bench Dialogue task, outperforming similar-scale models and even larger models with 13B and 30B parameters. Our model has significantly improved conversational and analytical reasoning abilities.