Abstract:Supervised Fine-Tuning (SFT) is a standard approach for injecting domain knowledge into Large Language Models (LLMs). However, relying on validation perplexity to monitor training is often insufficient, as it confounds stylistic mimicry with genuine factual internalization. To address this, we introduce the Knowledge Retention (KR) Test , a lightweight, corpus-grounded evaluation framework designed to distinguish factual learning from linguistics. KR-Test utilizes automatically generated contrastive examples to measure likelihood preferences for correct versus incorrect continuations, requiring no instruction tuning or generative decoding. We validate the framework's integrity through a "blind vs. oracle" baseline analysis. Furthermore, we demonstrate the diagnostic capabilities of KR-Test by analyzing the training dynamics of Low-Rank Adaptation (LoRA). By exposing the fine-grained dissociation between linguistic convergence and knowledge retention, KR-Test enhances the interpretability of fine-tuning dynamics.
Abstract:We present SWaRL, a robust and fidelity-preserving watermarking framework designed to protect the intellectual property of code LLM owners by embedding unique and verifiable signatures in the generated output. Existing approaches rely on manually crafted transformation rules to preserve watermarked code functionality or manipulate token-generation probabilities at inference time, which are prone to compilation errors. To address these challenges, SWaRL employs a reinforcement learning-based co-training framework that uses compiler feedback for functional correctness and a jointly trained confidential verifier as a reward signal to maintain watermark detectability. Furthermore, SWaRL employs low-rank adaptation (LoRA) during fine-tuning, allowing the learned watermark information to be transferable across model updates. Extensive experiments show that SWaRL achieves higher watermark detection accuracy compared to prior methods while fully maintaining watermarked code functionality. The LoRA-based signature embedding steers the base model to generate and solve code in a watermark-specific manner without significant computational overhead. Moreover, SWaRL exhibits strong resilience against refactoring and adversarial transformation attacks.
Abstract:The increasing reliance on generative AI models has accelerated the generation rate of synthetic data, with some projections suggesting that most available new data for training could be machine-generated by 2030. This shift to a mainly synthetic content presents a critical challenge: repeated training in synthetic data leads to a phenomenon known as model collapse, where model performance degrades over generations of training, eventually rendering the models ineffective. Although prior studies have explored the causes and detection of model collapse, existing mitigation strategies remain limited. In this paper, we identify model overconfidence in their self-generated data as a key driver of collapse. Building on this observation, we propose a confidence-aware loss function that downweights high-confidence predictions during training. We introduce a novel loss function we call Truncated Cross Entropy (TCE). We demonstrate that TCE significantly delays model collapse in recursive training. We provide a model-agnostic framework that links the loss function design to model collapse mitigation and validate our approach both theoretically and empirically, showing that it can extend the model's fidelity interval before collapse by more than 2.3x. Finally, we show that our method generalizes across modalities. These findings suggest that the design of loss functions provides a simple yet powerful tool for preserving the quality of generative models in the era of increasing synthetic data.
Abstract:We introduce DyCO-GNN, a novel unsupervised learning framework for Dynamic Combinatorial Optimization that requires no training data beyond the problem instance itself. DyCO-GNN leverages structural similarities across time-evolving graph snapshots to accelerate optimization while maintaining solution quality. We evaluate DyCO-GNN on dynamic maximum cut, maximum independent set, and the traveling salesman problem across diverse datasets of varying sizes, demonstrating its superior performance under tight and moderate time budgets. DyCO-GNN consistently outperforms the baseline methods, achieving high-quality solutions up to 3-60x faster, highlighting its practical effectiveness in rapidly evolving resource-constrained settings.
Abstract:This paper proposes MergeGuard, a novel methodology for mitigation of AI Trojan attacks. Trojan attacks on AI models cause inputs embedded with triggers to be misclassified to an adversary's target class, posing a significant threat to model usability trained by an untrusted third party. The core of MergeGuard is a new post-training methodology for linearizing and merging fully connected layers which we show simultaneously improves model generalizability and performance. Our Proof of Concept evaluation on Transformer models demonstrates that MergeGuard maintains model accuracy while decreasing trojan attack success rate, outperforming commonly used (post-training) Trojan mitigation by fine-tuning methodologies.
Abstract:Large language models (LLMs) have demonstrated exceptional capabilities in generating text, images, and video content. However, as context length grows, the computational cost of attention increases quadratically with the number of tokens, presenting significant efficiency challenges. This paper presents an analysis of various Key-Value (KV) cache compression strategies, offering a comprehensive taxonomy that categorizes these methods by their underlying principles and implementation techniques. Furthermore, we evaluate their impact on performance and inference latency, providing critical insights into their effectiveness. Our findings highlight the trade-offs involved in KV cache compression and its influence on handling long-context scenarios, paving the way for more efficient LLM implementations.




Abstract:Federated Learning is vulnerable to adversarial manipulation, where malicious clients can inject poisoned updates to influence the global model's behavior. While existing defense mechanisms have made notable progress, they fail to protect against adversaries that aim to induce targeted backdoors under different learning and attack configurations. To address this limitation, we introduce DROP (Distillation-based Reduction Of Poisoning), a novel defense mechanism that combines clustering and activity-tracking techniques with extraction of benign behavior from clients via knowledge distillation to tackle stealthy adversaries that manipulate low data poisoning rates and diverse malicious client ratios within the federation. Through extensive experimentation, our approach demonstrates superior robustness compared to existing defenses across a wide range of learning configurations. Finally, we evaluate existing defenses and our method under the challenging setting of non-IID client data distribution and highlight the challenges of designing a resilient FL defense in this setting.




Abstract:This paper introduces RoSe, the first-of-its-kind ML/Crypto codesign watermarking framework that regulates LLM-generated code to avoid intellectual property rights violations and inappropriate misuse in software development. High-quality watermarks adhering to the detectability-fidelity-robustness tri-objective are limited due to codes' low-entropy nature. Watermark verification, however, often needs to reveal the signature and requires re-encoding new ones for code reuse, which potentially compromising the system's usability. To overcome these challenges, RoSe obtains high-quality watermarks by training the watermark insertion and extraction modules end-to-end to ensure (i) unaltered watermarked code functionality and (ii) enhanced detectability and robustness leveraging pre-trained CodeT5 as the insertion backbone to enlarge the code syntactic and variable rename transformation search space. In the deployment, RoSe uses zero-knowledge proofs for secure verification without revealing the underlying signatures. Extensive evaluations demonstrated RoSe achieves high detection accuracy while preserving the code functionality. RoSe is also robust against attacks and provides efficient secure watermark verification.




Abstract:Trojan attacks are sophisticated training-time attacks on neural networks that embed backdoor triggers which force the network to produce a specific output on any input which includes the trigger. With the increasing relevance of deep networks which are too large to train with personal resources and which are trained on data too large to thoroughly audit, these training-time attacks pose a significant risk. In this work, we connect trojan attacks to Neural Collapse, a phenomenon wherein the final feature representations of over-parameterized neural networks converge to a simple geometric structure. We provide experimental evidence that trojan attacks disrupt this convergence for a variety of datasets and architectures. We then use this disruption to design a lightweight, broadly generalizable mechanism for cleansing trojan attacks from a wide variety of different network architectures and experimentally demonstrate its efficacy.




Abstract:Vibrometry-based side channels pose a significant privacy risk, exploiting sensors like mmWave radars, light sensors, and accelerometers to detect vibrations from sound sources or proximate objects, enabling speech eavesdropping. Despite various proposed defenses, these involve costly hardware solutions with inherent physical limitations. This paper presents EveGuard, a software-driven defense framework that creates adversarial audio, protecting voice privacy from side channels without compromising human perception. We leverage the distinct sensing capabilities of side channels and traditional microphones where side channels capture vibrations and microphones record changes in air pressure, resulting in different frequency responses. EveGuard first proposes a perturbation generator model (PGM) that effectively suppresses sensor-based eavesdropping while maintaining high audio quality. Second, to enable end-to-end training of PGM, we introduce a new domain translation task called Eve-GAN for inferring an eavesdropped signal from a given audio. We further apply few-shot learning to mitigate the data collection overhead for Eve-GAN training. Our extensive experiments show that EveGuard achieves a protection rate of more than 97 percent from audio classifiers and significantly hinders eavesdropped audio reconstruction. We further validate the performance of EveGuard across three adaptive attack mechanisms. We have conducted a user study to verify the perceptual quality of our perturbed audio.