Abstract:This paper proposed LightSleepNet - a light-weight, 1-d Convolutional Neural Network (CNN) based personalized architecture for real-time sleep staging, which can be implemented on various mobile platforms with limited hardware resources. The proposed architecture only requires an input of 30s single-channel EEG signal for the classification. Two residual blocks consisting of group 1-d convolution are used instead of the traditional convolution layers to remove the redundancy in the CNN. Channel shuffles are inserted into each convolution layer to improve the accuracy. In order to avoid over-fitting to the training set, a Global Average Pooling (GAP) layer is used to replace the fully connected layer, which further reduces the total number of the model parameters significantly. A personalized algorithm combining Adaptive Batch Normalization (AdaBN) and gradient re-weighting is proposed for unsupervised domain adaptation. A higher priority is given to examples that are easy to transfer to the new subject, and the algorithm could be personalized for new subjects without re-training. Experimental results show a state-of-the-art overall accuracy of 83.8% with only 45.76 Million Floating-point Operations per Second (MFLOPs) computation and 43.08 K parameters.
Abstract:This paper proposed a Multi-Channel Multi-Domain (MCMD) based knowledge distillation algorithm for sleep staging using single-channel EEG. Both knowledge from different domains and different channels are learnt in the proposed algorithm, simultaneously. A multi-channel pre-training and single-channel fine-tuning scheme is used in the proposed work. The knowledge from different channels in the source domain is transferred to the single-channel model in the target domain. A pre-trained teacher-student model scheme is used to distill knowledge from the multi-channel teacher model to the single-channel student model combining with output transfer and intermediate feature transfer in the target domain. The proposed algorithm achieves a state-of-the-art single-channel sleep staging accuracy of 86.5%, with only 0.6% deterioration from the state-of-the-art multi-channel model. There is an improvement of 2% compared to the baseline model. The experimental results show that knowledge from multiple domains (different datasets) and multiple channels (e.g. EMG, EOG) could be transferred to single-channel sleep staging.
Abstract:Recent advancements in large language models (LLMs) have demonstrated remarkable abilities in handling a variety of natural language processing (NLP) downstream tasks, even on mathematical tasks requiring multi-step reasoning. In this report, we introduce the KwaiYiiMath which enhances the mathematical reasoning abilities of KwaiYiiBase1, by applying Supervised Fine-Tuning (SFT) and Reinforced Learning from Human Feedback (RLHF), including on both English and Chinese mathematical tasks. Meanwhile, we also constructed a small-scale Chinese primary school mathematics test set (named KMath), consisting of 188 examples to evaluate the correctness of the problem-solving process generated by the models. Empirical studies demonstrate that KwaiYiiMath can achieve state-of-the-art (SOTA) performance on GSM8k, CMath, and KMath compared with the similar size models, respectively.
Abstract:Although many fairness criteria have been proposed to ensure that machine learning algorithms do not exhibit or amplify our existing social biases, these algorithms are trained on datasets that can themselves be statistically biased. In this paper, we investigate the robustness of a number of existing (demographic) fairness criteria when the algorithm is trained on biased data. We consider two forms of dataset bias: errors by prior decision makers in the labeling process, and errors in measurement of the features of disadvantaged individuals. We analytically show that some constraints (such as Demographic Parity) can remain robust when facing certain statistical biases, while others (such as Equalized Odds) are significantly violated if trained on biased data. We also analyze the sensitivity of these criteria and the decision maker's utility to biases. We provide numerical experiments based on three real-world datasets (the FICO, Adult, and German credit score datasets) supporting our analytical findings. Our findings present an additional guideline for choosing among existing fairness criteria, or for proposing new criteria, when available datasets may be biased.
Abstract:Deep learning based models have dominated the current landscape of production recommender systems. Furthermore, recent years have witnessed an exponential growth of the model scale--from Google's 2016 model with 1 billion parameters to the latest Facebook's model with 12 trillion parameters. Significant quality boost has come with each jump of the model capacity, which makes us believe the era of 100 trillion parameters is around the corner. However, the training of such models is challenging even within industrial scale data centers. This difficulty is inherited from the staggering heterogeneity of the training computation--the model's embedding layer could include more than 99.99% of the total model size, which is extremely memory-intensive; while the rest neural network is increasingly computation-intensive. To support the training of such huge models, an efficient distributed training system is in urgent need. In this paper, we resolve this challenge by careful co-design of both the optimization algorithm and the distributed system architecture. Specifically, in order to ensure both the training efficiency and the training accuracy, we design a novel hybrid training algorithm, where the embedding layer and the dense neural network are handled by different synchronization mechanisms; then we build a system called Persia (short for parallel recommendation training system with hybrid acceleration) to support this hybrid training algorithm. Both theoretical demonstration and empirical study up to 100 trillion parameters have conducted to justified the system design and implementation of Persia. We make Persia publicly available (at https://github.com/PersiaML/Persia) so that anyone would be able to easily train a recommender model at the scale of 100 trillion parameters.