Abstract:This paper proposes to use cepstrum for artifact detection, recognition and removal in prefrontal EEG. This work focuses on the artifact caused by eye movement. A database containing artifact-free EEG and eye movement contaminated EEG from different subjects is established. A cepstral analysis-based feature extraction with support vector machine (SVM) based classifier is designed to identify the artifacts from the target EEG signals. The proposed method achieves an accuracy of 99.62% on the artifact detection task and a 82.79% accuracy on the 6-category eye movement classification task. A statistical value-based artifact removal method is proposed and evaluated on a public EEG database, where an accuracy improvement of 3.46% is obtained on the 3-category emotion classification task. In order to make a confident decision of each 5s EEG segment, the algorithm requires only 0.66M multiplication operations. Compared to the state-of-the-art approaches in artifact detection and removal, the proposed method features higher detection accuracy and lower computational cost, which makes it a more suitable solution to be integrated into a real-time and artifact robust Brain-Machine Interface (BMI).
Abstract:This paper proposed a Multi-Channel Multi-Domain (MCMD) based knowledge distillation algorithm for sleep staging using single-channel EEG. Both knowledge from different domains and different channels are learnt in the proposed algorithm, simultaneously. A multi-channel pre-training and single-channel fine-tuning scheme is used in the proposed work. The knowledge from different channels in the source domain is transferred to the single-channel model in the target domain. A pre-trained teacher-student model scheme is used to distill knowledge from the multi-channel teacher model to the single-channel student model combining with output transfer and intermediate feature transfer in the target domain. The proposed algorithm achieves a state-of-the-art single-channel sleep staging accuracy of 86.5%, with only 0.6% deterioration from the state-of-the-art multi-channel model. There is an improvement of 2% compared to the baseline model. The experimental results show that knowledge from multiple domains (different datasets) and multiple channels (e.g. EMG, EOG) could be transferred to single-channel sleep staging.
Abstract:It is easy for the electroencephalogram (EEG) signal to be incomplete due to packet loss, electrode falling off, etc. This paper proposed a Cascade Transformer architecture and a loss weighting method for the single-channel EEG completion, which reduced the Normalized Root Mean Square Error (NRMSE) by 2.8% and 8.5%, respectively. With the percentage of the missing points ranging from 1% to 50%, the proposed method achieved a NRMSE from 0.026 to 0.063, which aligned with the state-of-the-art multi-channel completion solution. The proposed work shows it's feasible to perform the EEG completion with only single-channel EEG.