Abstract:This paper proposes to use cepstrum for artifact detection, recognition and removal in prefrontal EEG. This work focuses on the artifact caused by eye movement. A database containing artifact-free EEG and eye movement contaminated EEG from different subjects is established. A cepstral analysis-based feature extraction with support vector machine (SVM) based classifier is designed to identify the artifacts from the target EEG signals. The proposed method achieves an accuracy of 99.62% on the artifact detection task and a 82.79% accuracy on the 6-category eye movement classification task. A statistical value-based artifact removal method is proposed and evaluated on a public EEG database, where an accuracy improvement of 3.46% is obtained on the 3-category emotion classification task. In order to make a confident decision of each 5s EEG segment, the algorithm requires only 0.66M multiplication operations. Compared to the state-of-the-art approaches in artifact detection and removal, the proposed method features higher detection accuracy and lower computational cost, which makes it a more suitable solution to be integrated into a real-time and artifact robust Brain-Machine Interface (BMI).
Abstract:This paper proposes SaleNet - an end-to-end convolutional neural network (CNN) for sustained attention level evaluation using prefrontal electroencephalogram (EEG). A bias-driven pruning method is proposed together with group convolution, global average pooling (GAP), near-zero pruning, weight clustering and quantization for the model compression, achieving a total compression ratio of 183.11x. The compressed SaleNet obtains a state-of-the-art subject-independent sustained attention level classification accuracy of 84.2% on the recorded 6-subject EEG database in this work. The SaleNet is implemented on a Artix-7 FPGA with a competitive power consumption of 0.11 W and an energy-efficiency of 8.19 GOps/W.