Abstract:Neural network (NN) based approaches for super-resolution MRI typically require high-SNR high-resolution reference data acquired in many subjects, which is time consuming and a barrier to feasible and accessible implementation. We propose to train NNs for Super-Resolution using Noisy Reference data (SRNR), leveraging the mechanism of the classic NN-based denoising method Noise2Noise. We systematically demonstrate that results from NNs trained using noisy and high-SNR references are similar for both simulated and empirical data. SRNR suggests a smaller number of repetitions of high-resolution reference data can be used to simplify the training data preparation for super-resolution MRI.
Abstract:This paper proposes SaleNet - an end-to-end convolutional neural network (CNN) for sustained attention level evaluation using prefrontal electroencephalogram (EEG). A bias-driven pruning method is proposed together with group convolution, global average pooling (GAP), near-zero pruning, weight clustering and quantization for the model compression, achieving a total compression ratio of 183.11x. The compressed SaleNet obtains a state-of-the-art subject-independent sustained attention level classification accuracy of 84.2% on the recorded 6-subject EEG database in this work. The SaleNet is implemented on a Artix-7 FPGA with a competitive power consumption of 0.11 W and an energy-efficiency of 8.19 GOps/W.