Abstract:Neural Representations for Videos (NeRV) has emerged as a promising implicit neural representation (INR) approach for video analysis, which represents videos as neural networks with frame indexes as inputs. However, NeRV-based methods are time-consuming when adapting to a large number of diverse videos, as each video requires a separate NeRV model to be trained from scratch. In addition, NeRV-based methods spatially require generating a high-dimension signal (i.e., an entire image) from the input of a low-dimension timestamp, and a video typically consists of tens of frames temporally that have a minor change between adjacent frames. To improve the efficiency of video representation, we propose Meta Neural Representations for Videos, named MetaNeRV, a novel framework for fast NeRV representation for unseen videos. MetaNeRV leverages a meta-learning framework to learn an optimal parameter initialization, which serves as a good starting point for adapting to new videos. To address the unique spatial and temporal characteristics of video modality, we further introduce spatial-temporal guidance to improve the representation capabilities of MetaNeRV. Specifically, the spatial guidance with a multi-resolution loss aims to capture the information from different resolution stages, and the temporal guidance with an effective progressive learning strategy could gradually refine the number of fitted frames during the meta-learning process. Extensive experiments conducted on multiple datasets demonstrate the superiority of MetaNeRV for video representations and video compression.
Abstract:Clinical rationales play a pivotal role in accurate disease diagnosis; however, many models predominantly use discriminative methods and overlook the importance of generating supportive rationales. Rationale distillation is a process that transfers knowledge from large language models (LLMs) to smaller language models (SLMs), thereby enhancing the latter's ability to break down complex tasks. Despite its benefits, rationale distillation alone is inadequate for addressing domain knowledge limitations in tasks requiring specialized expertise, such as disease diagnosis. Effectively embedding domain knowledge in SLMs poses a significant challenge. While current LLMs are primarily geared toward processing textual data, multimodal LLMs that incorporate time series data, especially electronic health records (EHRs), are still evolving. To tackle these limitations, we introduce ClinRaGen, an SLM optimized for multimodal rationale generation in disease diagnosis. ClinRaGen incorporates a unique knowledge-augmented attention mechanism to merge domain knowledge with time series EHR data, utilizing a stepwise rationale distillation strategy to produce both textual and time series-based clinical rationales. Our evaluations show that ClinRaGen markedly improves the SLM's capability to interpret multimodal EHR data and generate accurate clinical rationales, supporting more reliable disease diagnosis, advancing LLM applications in healthcare, and narrowing the performance divide between LLMs and SLMs.
Abstract:Implicit Neural Representation (INR) has gained increasing popularity as a data representation method, serving as a prerequisite for innovative generation models. Unlike gradient-based methods, which exhibit lower efficiency in inference, the adoption of hyper-network for generating parameters in Multi-Layer Perceptrons (MLP), responsible for executing INR functions, has surfaced as a promising and efficient alternative. However, as a global continuous function, MLP is challenging in modeling highly discontinuous signals, resulting in slow convergence during the training phase and inaccurate reconstruction performance. Moreover, MLP requires massive representation parameters, which implies inefficiencies in data representation. In this paper, we propose a novel Attention-based Localized INR (ANR) composed of a localized attention layer (LAL) and a global MLP that integrates coordinate features with data features and converts them to meaningful outputs. Subsequently, we design an instance representation framework that delivers a transformer-like hyper-network to represent data instances as a compact representation vector. With instance-specific representation vector and instance-agnostic ANR parameters, the target signals are well reconstructed as a continuous function. We further address aliasing artifacts with variational coordinates when obtaining the super-resolution inference results. Extensive experimentation across four datasets showcases the notable efficacy of our ANR method, e.g. enhancing the PSNR value from 37.95dB to 47.25dB on the CelebA dataset. Code is released at https://github.com/Roninton/ANR.
Abstract:Determining the necessity of resecting malignant polyps during colonoscopy screen is crucial for patient outcomes, yet challenging due to the time-consuming and costly nature of histopathology examination. While deep learning-based classification models have shown promise in achieving optical biopsy with endoscopic images, they often suffer from a lack of explainability. To overcome this limitation, we introduce EndoFinder, a content-based image retrieval framework to find the 'digital twin' polyp in the reference database given a newly detected polyp. The clinical semantics of the new polyp can be inferred referring to the matched ones. EndoFinder pioneers a polyp-aware image encoder that is pre-trained on a large polyp dataset in a self-supervised way, merging masked image modeling with contrastive learning. This results in a generic embedding space ready for different downstream clinical tasks based on image retrieval. We validate the framework on polyp re-identification and optical biopsy tasks, with extensive experiments demonstrating that EndoFinder not only achieves explainable diagnostics but also matches the performance of supervised classification models. EndoFinder's reliance on image retrieval has the potential to support diverse downstream decision-making tasks during real-time colonoscopy procedures.
Abstract:Contemporary color difference (CD) measures for photographic images typically operate by comparing co-located pixels, patches in a ``perceptually uniform'' color space, or features in a learned latent space. Consequently, these measures inadequately capture the human color perception of misaligned image pairs, which are prevalent in digital photography (e.g., the same scene captured by different smartphones). In this paper, we describe a perceptual CD measure based on the multiscale sliced Wasserstein distance, which facilitates efficient comparisons between non-local patches of similar color and structure. This aligns with the modern understanding of color perception, where color and structure are inextricably interdependent as a unitary process of perceptual organization. Meanwhile, our method is easy to implement and training-free. Experimental results indicate that our CD measure performs favorably in assessing CDs in photographic images, and consistently surpasses competing models in the presence of image misalignment. Additionally, we empirically verify that our measure functions as a metric in the mathematical sense, and show its promise as a loss function for image and video color transfer tasks. The code is available at https://github.com/real-hjq/MS-SWD.
Abstract:In the realm of media technology, digital humans have gained prominence due to rapid advancements in computer technology. However, the manual modeling and control required for the majority of digital humans pose significant obstacles to efficient development. The speech-driven methods offer a novel avenue for manipulating the mouth shape and expressions of digital humans. Despite the proliferation of driving methods, the quality of many generated talking head (TH) videos remains a concern, impacting user visual experiences. To tackle this issue, this paper introduces the Talking Head Quality Assessment (THQA) database, featuring 800 TH videos generated through 8 diverse speech-driven methods. Extensive experiments affirm the THQA database's richness in character and speech features. Subsequent subjective quality assessment experiments analyze correlations between scoring results and speech-driven methods, ages, and genders. In addition, experimental results show that mainstream image and video quality assessment methods have limitations for the THQA database, underscoring the imperative for further research to enhance TH video quality assessment. The THQA database is publicly accessible at https://github.com/zyj-2000/THQA.
Abstract:The past years have witnessed a proliferation of large language models (LLMs). Yet, automated and unbiased evaluation of LLMs is challenging due to the inaccuracy of standard metrics in reflecting human preferences and the inefficiency in sampling informative and diverse test examples. While human evaluation remains the gold standard, it is expensive and time-consuming, especially when dealing with a large number of testing samples. To address this problem, we propose a sample-efficient human evaluation method based on MAximum Discrepancy (MAD) competition. MAD automatically selects a small set of informative and diverse instructions, each adapted to two LLMs, whose responses are subject to three-alternative forced choice by human subjects. The pairwise comparison results are then aggregated into a global ranking using the Elo rating system. We select eight representative LLMs and compare them in terms of four skills: knowledge understanding, mathematical reasoning, writing, and coding. Experimental results show that the proposed method achieves a reliable and sensible ranking of LLMs' capabilities, identifies their relative strengths and weaknesses, and offers valuable insights for further LLM advancement.
Abstract:This paper proposed LightSleepNet - a light-weight, 1-d Convolutional Neural Network (CNN) based personalized architecture for real-time sleep staging, which can be implemented on various mobile platforms with limited hardware resources. The proposed architecture only requires an input of 30s single-channel EEG signal for the classification. Two residual blocks consisting of group 1-d convolution are used instead of the traditional convolution layers to remove the redundancy in the CNN. Channel shuffles are inserted into each convolution layer to improve the accuracy. In order to avoid over-fitting to the training set, a Global Average Pooling (GAP) layer is used to replace the fully connected layer, which further reduces the total number of the model parameters significantly. A personalized algorithm combining Adaptive Batch Normalization (AdaBN) and gradient re-weighting is proposed for unsupervised domain adaptation. A higher priority is given to examples that are easy to transfer to the new subject, and the algorithm could be personalized for new subjects without re-training. Experimental results show a state-of-the-art overall accuracy of 83.8% with only 45.76 Million Floating-point Operations per Second (MFLOPs) computation and 43.08 K parameters.
Abstract:This paper proposed a Multi-Channel Multi-Domain (MCMD) based knowledge distillation algorithm for sleep staging using single-channel EEG. Both knowledge from different domains and different channels are learnt in the proposed algorithm, simultaneously. A multi-channel pre-training and single-channel fine-tuning scheme is used in the proposed work. The knowledge from different channels in the source domain is transferred to the single-channel model in the target domain. A pre-trained teacher-student model scheme is used to distill knowledge from the multi-channel teacher model to the single-channel student model combining with output transfer and intermediate feature transfer in the target domain. The proposed algorithm achieves a state-of-the-art single-channel sleep staging accuracy of 86.5%, with only 0.6% deterioration from the state-of-the-art multi-channel model. There is an improvement of 2% compared to the baseline model. The experimental results show that knowledge from multiple domains (different datasets) and multiple channels (e.g. EMG, EOG) could be transferred to single-channel sleep staging.
Abstract:Machine learning-assisted retrosynthesis prediction models have been gaining widespread adoption, though their performances oftentimes degrade significantly when deployed in real-world applications embracing out-of-distribution (OOD) molecules or reactions. Despite steady progress on standard benchmarks, our understanding of existing retrosynthesis prediction models under the premise of distribution shifts remains stagnant. To this end, we first formally sort out two types of distribution shifts in retrosynthesis prediction and construct two groups of benchmark datasets. Next, through comprehensive experiments, we systematically compare state-of-the-art retrosynthesis prediction models on the two groups of benchmarks, revealing the limitations of previous in-distribution evaluation and re-examining the advantages of each model. More remarkably, we are motivated by the above empirical insights to propose two model-agnostic techniques that can improve the OOD generalization of arbitrary off-the-shelf retrosynthesis prediction algorithms. Our preliminary experiments show their high potential with an average performance improvement of 4.6%, and the established benchmarks serve as a foothold for further retrosynthesis prediction research towards OOD generalization.