Abstract:In this paper, we design an exclusive Metaverse network traffic classifier, named Discern-XR, to help Internet service providers (ISP) and router manufacturers enhance the quality of Metaverse services. Leveraging segmented learning, the Frame Vector Representation (FVR) algorithm and Frame Identification Algorithm (FIA) are proposed to extract critical frame-related statistics from raw network data having only four application-level features. A novel Augmentation, Aggregation, and Retention Online Training (A2R-OT) algorithm is proposed to find an accurate classification model through online training methodology. In addition, we contribute to the real-world Metaverse dataset comprising virtual reality (VR) games, VR video, VR chat, augmented reality (AR), and mixed reality (MR) traffic, providing a comprehensive benchmark. Discern-XR outperforms state-of-the-art classifiers by 7% while improving training efficiency and reducing false-negative rates. Our work advances Metaverse network traffic classification by standing as the state-of-the-art solution.
Abstract:Time series forecasting remains a critical challenge across various domains, often complicated by high-dimensional data and long-term dependencies. This paper presents a novel transformer architecture for time series forecasting, incorporating two key innovations: parameter sharing (PS) and Spatial-Temporal Segment Attention (SegAtt). We also define the time series segment as the concatenation of sequence patches from the same positions across different variables. The proposed model, PSformer, reduces the number of training parameters through the parameter sharing mechanism, thereby improving model efficiency and scalability. The introduction of SegAtt could enhance the capability of capturing local spatio-temporal dependencies by computing attention over the segments, and improve global representation by integrating information across segments. The combination of parameter sharing and SegAtt significantly improves the forecasting performance. Extensive experiments on benchmark datasets demonstrate that PSformer outperforms popular baselines and other transformer-based approaches in terms of accuracy and scalability, establishing itself as an accurate and scalable tool for time series forecasting.
Abstract:Detecting weak targets is one of the main challenges for integrated sensing and communication (ISAC) systems. Sensing and communication suffer from a performance trade-off in ISAC systems. As the communication demand increases, sensing ability, especially weak target detection performance, will inevitably reduce. Traditional approaches fail to address this issue. In this paper, we develop a joint beamforming scheme and formulate it as a max-min problem to maximize the detection probability of the weakest target under the constraint of the signal-to-interference-plus-noise ratio (SINR) of multi-user communication. An alternating optimization (AO) algorithm is developed for solving the complicated non-convex problem to obtain the joint beamformer. The proposed scheme can direct the transmit energy toward the multiple targets properly to ensure robust multi-target detection performance. Numerical results show that the proposed beamforming scheme can effectively increase the detection probability of the weakest target compared to baseline approaches while ensuring communication performance.
Abstract:Deep learning-based network traffic classification (NTC) techniques, including conventional and class-of-service (CoS) classifiers, are a popular tool that aids in the quality of service (QoS) and radio resource management for the Internet of Things (IoT) network. Holistic temporal features consist of inter-, intra-, and pseudo-temporal features within packets, between packets, and among flows, providing the maximum information on network services without depending on defined classes in a problem. Conventional spatio-temporal features in the current solutions extract only space and time information between packets and flows, ignoring the information within packets and flow for IoT traffic. Therefore, we propose a new, efficient, holistic feature extraction method for deep-learning-based NTC using time-distributed feature learning to maximize the accuracy of the NTC. We apply a time-distributed wrapper on deep-learning layers to help extract pseudo-temporal features and spatio-temporal features. Pseudo-temporal features are mathematically complex to explain since, in deep learning, a black box extracts them. However, the features are temporal because of the time-distributed wrapper; therefore, we call them pseudo-temporal features. Since our method is efficient in learning holistic-temporal features, we can extend our method to both conventional and CoS NTC. Our solution proves that pseudo-temporal and spatial-temporal features can significantly improve the robustness and performance of any NTC. We analyze the solution theoretically and experimentally on different real-world datasets. The experimental results show that the holistic-temporal time-distributed feature learning method, on average, is 13.5% more accurate than the state-of-the-art conventional and CoS classifiers.
Abstract:Integrated sensing and communication (ISAC) is a key technology of next generation wireless communication. Backscatter communication (BackCom) plays an important role for internet of things (IoT). Then the integration of ISAC with BackCom technology enables low-power data transmission while enhancing the system sensing ability, which is expected to provide a potentially revolutionary solution for IoT applications. In this paper, we propose a novel backscatter-ISAC (B-ISAC) system and focus on the joint beamforming design for the system. We formulate the communication and sensing model of the B-ISAC system and derive the metrics of communication and sensing performance respectively, i.e., communication rate and detection probability. We propose a joint beamforming scheme aiming to optimize the communication rate under sensing constraint and power budget. A successive convex approximation (SCA) based algorithm and an iterative algorithm are developed for solving the complicated non-convex optimization problem. Numerical results validate the effectiveness of the proposed scheme and associated algorithms. The proposed B-ISAC system has broad application prospect in IoT scenarios.
Abstract:In data driven deep learning, distributed sensing and joint computing bring heavy load for computing and communication. To face the challenge, over-the-air computation (OAC) has been proposed for multi-sensor data aggregation, which enables the server to receive a desired function of massive sensing data during communication. However, the strict synchronization and accurate channel estimation constraints in OAC are hard to be satisfied in practice, leading to time and channel-gain misalignment. The paper formulates the misalignment problem as a non-blind image deblurring problem. At the receiver side, we first use the Wiener filter to deblur, followed by a U-Net network designed for further denoising. Our method is capable to exploit the inherent correlations in the signal data via learning, thus outperforms traditional methods in term of accuracy. Our code is available at https://github.com/auto-Dog/MOAC_deep
Abstract:The integration of backscatter communication (BackCom) technology with integrated sensing and communication (ISAC) technology not only enhances the system sensing performance, but also enables low-power information transmission. This is expected to provide a new paradigm for communication and sensing in internet of everything (IoE) applications. Existing works only consider sensing rate and detection performance, while none consider the estimation performance. The design of the system in different task modes also needs to be further studied. In this paper, we propose a novel system called backscatter-ISAC (B-ISAC) and design a joint beamforming framework for different stages (task modes). We derive communication performance metrics of the system in terms of the signal-to-interference-plus-noise ratio (SINR) and communication rate, and derive sensing performance metrics of the system in terms of probability of detection, estimation error of linear least squares (LS) estimation, and the estimation error of linear minimum mean square error (LMMSE) estimation. The proposed joint beamforming framework consists of three stages: tag detection, tag estimation, and communication enhancement. We develop corresponding joint beamforming schemes aimed at enhancing the performance objectives of their respective stages by solving complex non-convex optimization problems. Extensive simulation results demonstrate the effectiveness of the proposed joint beamforming schemes. The proposed B-ISAC system has broad application prospect in sixth generation (6G) IoE scenarios.
Abstract:Tactile sensors, which provide information about the physical properties of objects, are an essential component of robotic systems. The visuotactile sensing technology with the merits of high resolution and low cost has facilitated the development of robotics from environment exploration to dexterous operation. Over the years, several reviews on visuotactile sensors for robots have been presented, but few of them discussed the significance of signal processing methods to visuotactile sensors. Apart from ingenious hardware design, the full potential of the sensory system toward designated tasks can only be released with the appropriate signal processing methods. Therefore, this paper provides a comprehensive review of visuotactile sensors from the perspective of signal processing methods and outlooks possible future research directions for visuotactile sensors.
Abstract:Explaining the decisions made by audio spoofing detection models is crucial for fostering trust in detection outcomes. However, current research on the interpretability of detection models is limited to applying XAI tools to post-trained models. In this paper, we utilize the wav2vec 2.0 model and attentive utterance-level features to integrate interpretability directly into the model's architecture, thereby enhancing transparency of the decision-making process. Specifically, we propose a class activation representation to localize the discriminative frames contributing to detection. Furthermore, we demonstrate that multi-label training based on spoofing types, rather than binary labels as bonafide and spoofed, enables the model to learn distinct characteristics of different attacks, significantly improving detection performance. Our model achieves state-of-the-art results, with an EER of 0.51% and a min t-DCF of 0.0165 on the ASVspoof2019-LA set.
Abstract:The newly proposed Generalized Referring Expression Segmentation (GRES) amplifies the formulation of classic RES by involving multiple/non-target scenarios. Recent approaches focus on optimizing the last modality-fused feature which is directly utilized for segmentation and object-existence identification. However, the attempt to integrate all-grained information into a single joint representation is impractical in GRES due to the increased complexity of the spatial relationships among instances and deceptive text descriptions. Furthermore, the subsequent binary target justification across all referent scenarios fails to specify their inherent differences, leading to ambiguity in object understanding. To address the weakness, we propose a $\textbf{H}$ierarchical Semantic $\textbf{D}$ecoding with $\textbf{C}$ounting Assistance framework (HDC). It hierarchically transfers complementary modality information across granularities, and then aggregates each well-aligned semantic correspondence for multi-level decoding. Moreover, with complete semantic context modeling, we endow HDC with explicit counting capability to facilitate comprehensive object perception in multiple/single/non-target settings. Experimental results on gRefCOCO, Ref-ZOM, R-RefCOCO, and RefCOCO benchmarks demonstrate the effectiveness and rationality of HDC which outperforms the state-of-the-art GRES methods by a remarkable margin. Code will be available $\href{https://github.com/RobertLuo1/HDC}{here}$.