Abstract:Time series forecasting remains a critical challenge across various domains, often complicated by high-dimensional data and long-term dependencies. This paper presents a novel transformer architecture for time series forecasting, incorporating two key innovations: parameter sharing (PS) and Spatial-Temporal Segment Attention (SegAtt). We also define the time series segment as the concatenation of sequence patches from the same positions across different variables. The proposed model, PSformer, reduces the number of training parameters through the parameter sharing mechanism, thereby improving model efficiency and scalability. The introduction of SegAtt could enhance the capability of capturing local spatio-temporal dependencies by computing attention over the segments, and improve global representation by integrating information across segments. The combination of parameter sharing and SegAtt significantly improves the forecasting performance. Extensive experiments on benchmark datasets demonstrate that PSformer outperforms popular baselines and other transformer-based approaches in terms of accuracy and scalability, establishing itself as an accurate and scalable tool for time series forecasting.
Abstract:Large Language Models (LLMs) have shown superior performance in various applications and fields. To achieve better performance on specialized domains such as law and advertisement, LLMs are often continue pre-trained on in-domain data. However, existing approaches suffer from two major issues. First, in-domain data are scarce compared with general domain-agnostic data. Second, data used for continual pre-training are not task-aware, such that they may not be helpful to downstream applications. We propose TRAIT, a task-oriented in-domain data augmentation framework. Our framework is divided into two parts: in-domain data selection and task-oriented synthetic passage generation. The data selection strategy identifies and selects a large amount of in-domain data from general corpora, and thus significantly enriches domain knowledge in the continual pre-training data. The synthetic passages contain guidance on how to use domain knowledge to answer questions about downstream tasks. By training on such passages, the model aligns with the need of downstream applications. We adapt LLMs to two domains: advertisement and math. On average, TRAIT improves LLM performance by 8% in the advertisement domain and 7.5% in the math domain.
Abstract:Video grounding aims to localize the target moment in an untrimmed video corresponding to a given sentence query. Existing methods typically select the best prediction from a set of predefined proposals or directly regress the target span in a single-shot manner, resulting in the absence of a systematical prediction refinement process. In this paper, we propose DiffusionVG, a novel framework with diffusion models that formulates video grounding as a conditional generation task, where the target span is generated from Gaussian noise inputs and interatively refined in the reverse diffusion process. During training, DiffusionVG progressively adds noise to the target span with a fixed forward diffusion process and learns to recover the target span in the reverse diffusion process. In inference, DiffusionVG can generate the target span from Gaussian noise inputs by the learned reverse diffusion process conditioned on the video-sentence representations. Our DiffusionVG follows the encoder-decoder architecture, which firstly encodes the video-sentence features and iteratively denoises the predicted spans in its specialized span refining decoder. Without bells and whistles, our DiffusionVG demonstrates competitive or even superior performance compared to existing well-crafted models on mainstream Charades-STA and ActivityNet Captions benchmarks.
Abstract:Emotion recognition in conversations (ERC) is a rapidly evolving task within the natural language processing community, which aims to detect the emotions expressed by speakers during a conversation. Recently, a growing number of ERC methods have focused on leveraging supervised contrastive learning (SCL) to enhance the robustness and generalizability of learned features. However, current SCL-based approaches in ERC are impeded by the constraint of large batch sizes and the lack of compatibility with most existing ERC models. To address these challenges, we propose an efficient and model-agnostic SCL framework named Supervised Sample-Label Contrastive Learning with Soft-HGR Maximal Correlation (SSLCL), which eliminates the need for a large batch size and can be seamlessly integrated with existing ERC models without introducing any model-specific assumptions. Specifically, we introduce a novel perspective on utilizing label representations by projecting discrete labels into dense embeddings through a shallow multilayer perceptron, and formulate the training objective to maximize the similarity between sample features and their corresponding ground-truth label embeddings, while minimizing the similarity between sample features and label embeddings of disparate classes. Moreover, we innovatively adopt the Soft-HGR maximal correlation as a measure of similarity between sample features and label embeddings, leading to significant performance improvements over conventional similarity measures. Additionally, multimodal cues of utterances are effectively leveraged by SSLCL as data augmentations to boost model performances. Extensive experiments on two ERC benchmark datasets, IEMOCAP and MELD, demonstrate the compatibility and superiority of our proposed SSLCL framework compared to existing state-of-the-art SCL methods. Our code is available at \url{https://github.com/TaoShi1998/SSLCL}.
Abstract:Data heterogeneity is one of the most challenging issues in federated learning, which motivates a variety of approaches to learn personalized models for participating clients. One such approach in deep neural networks based tasks is employing a shared feature representation and learning a customized classifier head for each client. However, previous works do not utilize the global knowledge during local representation learning and also neglect the fine-grained collaboration between local classifier heads, which limit the model generalization ability. In this work, we conduct explicit local-global feature alignment by leveraging global semantic knowledge for learning a better representation. Moreover, we quantify the benefit of classifier combination for each client as a function of the combining weights and derive an optimization problem for estimating optimal weights. Finally, extensive evaluation results on benchmark datasets with various heterogeneous data scenarios demonstrate the effectiveness of our proposed method. Code is available at https://github.com/JianXu95/FedPAC
Abstract:The label distribution skew induced data heterogeniety has been shown to be a significant obstacle that limits the model performance in federated learning, which is particularly developed for collaborative model training over decentralized data sources while preserving user privacy. This challenge could be more serious when the participating clients are in unstable circumstances and dropout frequently. Previous work and our empirical observations demonstrate that the classifier head for classification task is more sensitive to label skew and the unstable performance of FedAvg mainly lies in the imbalanced training samples across different classes. The biased classifier head will also impact the learning of feature representations. Therefore, maintaining a balanced classifier head is of significant importance for building a better global model. To this end, we propose a simple yet effective framework by introducing a prior-calibrated softmax function for computing the cross-entropy loss and a prototype-based feature augmentation scheme to re-balance the local training, which are lightweight for edge devices and can facilitate the global model aggregation. The improved model performance over existing baselines in the presence of non-IID data and client dropout is demonstrated by conducting extensive experiments on benchmark classification tasks.
Abstract:Task transfer learning is a popular technique in image processing applications that uses pre-trained models to reduce the supervision cost of related tasks. An important question is to determine task transferability, i.e. given a common input domain, estimating to what extent representations learned from a source task can help in learning a target task. Typically, transferability is either measured experimentally or inferred through task relatedness, which is often defined without a clear operational meaning. In this paper, we present a novel metric, H-score, an easily-computable evaluation function that estimates the performance of transferred representations from one task to another in classification problems using statistical and information theoretic principles. Experiments on real image data show that our metric is not only consistent with the empirical transferability measurement, but also useful to practitioners in applications such as source model selection and task transfer curriculum learning.
Abstract:Despite strong empirical performance for image classification, deep neural networks are often regarded as ``black boxes'' and they are difficult to interpret. On the other hand, sparse convolutional models, which assume that a signal can be expressed by a linear combination of a few elements from a convolutional dictionary, are powerful tools for analyzing natural images with good theoretical interpretability and biological plausibility. However, such principled models have not demonstrated competitive performance when compared with empirically designed deep networks. This paper revisits the sparse convolutional modeling for image classification and bridges the gap between good empirical performance (of deep learning) and good interpretability (of sparse convolutional models). Our method uses differentiable optimization layers that are defined from convolutional sparse coding as drop-in replacements of standard convolutional layers in conventional deep neural networks. We show that such models have equally strong empirical performance on CIFAR-10, CIFAR-100, and ImageNet datasets when compared to conventional neural networks. By leveraging stable recovery property of sparse modeling, we further show that such models can be much more robust to input corruptions as well as adversarial perturbations in testing through a simple proper trade-off between sparse regularization and data reconstruction terms. Source code can be found at https://github.com/Delay-Xili/SDNet.
Abstract:We propose two novel transferability metrics F-OTCE (Fast Optimal Transport based Conditional Entropy) and JC-OTCE (Joint Correspondence OTCE) to evaluate how much the source model (task) can benefit the learning of the target task and to learn more transferable representations for cross-domain cross-task transfer learning. Unlike the existing metric that requires evaluating the empirical transferability on auxiliary tasks, our metrics are auxiliary-free such that they can be computed much more efficiently. Specifically, F-OTCE estimates transferability by first solving an Optimal Transport (OT) problem between source and target distributions, and then uses the optimal coupling to compute the Negative Conditional Entropy between source and target labels. It can also serve as a loss function to maximize the transferability of the source model before finetuning on the target task. Meanwhile, JC-OTCE improves the transferability robustness of F-OTCE by including label distances in the OT problem, though it may incur additional computation cost. Extensive experiments demonstrate that F-OTCE and JC-OTCE outperform state-of-the-art auxiliary-free metrics by 18.85% and 28.88%, respectively in correlation coefficient with the ground-truth transfer accuracy. By eliminating the training cost of auxiliary tasks, the two metrics reduces the total computation time of the previous method from 43 minutes to 9.32s and 10.78s, respectively, for a pair of tasks. When used as a loss function, F-OTCE shows consistent improvements on the transfer accuracy of the source model in few-shot classification experiments, with up to 4.41% accuracy gain.
Abstract:Domain generalization aims at learning a universal model that performs well on unseen target domains, incorporating knowledge from multiple source domains. In this research, we consider the scenario where different domain shifts occur among conditional distributions of different classes across domains. When labeled samples in the source domains are limited, existing approaches are not sufficiently robust. To address this problem, we propose a novel domain generalization framework called Wasserstein Distributionally Robust Domain Generalization (WDRDG), inspired by the concept of distributionally robust optimization. We encourage robustness over conditional distributions within class-specific Wasserstein uncertainty sets and optimize the worst-case performance of a classifier over these uncertainty sets. We further develop a test-time adaptation module leveraging optimal transport to quantify the relationship between the unseen target domain and source domains to make adaptive inference for target data. Experiments on the Rotated MNIST, PACS and the VLCS datasets demonstrate that our method could effectively balance the robustness and discriminability in challenging generalization scenarios.