Abstract:The rapidly developing field of large multimodal models (LMMs) has led to the emergence of diverse models with remarkable capabilities. However, existing benchmarks fail to comprehensively, objectively and accurately evaluate whether LMMs align with the diverse needs of humans in real-world scenarios. To bridge this gap, we propose the Multi-Dimensional Insights (MDI) benchmark, which includes over 500 images covering six common scenarios of human life. Notably, the MDI-Benchmark offers two significant advantages over existing evaluations: (1) Each image is accompanied by two types of questions: simple questions to assess the model's understanding of the image, and complex questions to evaluate the model's ability to analyze and reason beyond basic content. (2) Recognizing that people of different age groups have varying needs and perspectives when faced with the same scenario, our benchmark stratifies questions into three age categories: young people, middle-aged people, and older people. This design allows for a detailed assessment of LMMs' capabilities in meeting the preferences and needs of different age groups. With MDI-Benchmark, the strong model like GPT-4o achieve 79% accuracy on age-related tasks, indicating that existing LMMs still have considerable room for improvement in addressing real-world applications. Looking ahead, we anticipate that the MDI-Benchmark will open new pathways for aligning real-world personalization in LMMs. The MDI-Benchmark data and evaluation code are available at https://mdi-benchmark.github.io/
Abstract:Online updating of time series forecasting models aims to tackle the challenge of concept drifting by adjusting forecasting models based on streaming data. While numerous algorithms have been developed, most of them focus on model design and updating. In practice, many of these methods struggle with continuous performance regression in the face of accumulated concept drifts over time. To address this limitation, we present a novel approach, Concept \textbf{D}rift \textbf{D}etection an\textbf{D} \textbf{A}daptation (D3A), that first detects drifting conception and then aggressively adapts the current model to the drifted concepts after the detection for rapid adaption. To best harness the utility of historical data for model adaptation, we propose a data augmentation strategy introducing Gaussian noise into existing training instances. It helps mitigate the data distribution gap, a critical factor contributing to train-test performance inconsistency. The significance of our data augmentation process is verified by our theoretical analysis. Our empirical studies across six datasets demonstrate the effectiveness of D3A in improving model adaptation capability. Notably, compared to a simple Temporal Convolutional Network (TCN) baseline, D3A reduces the average Mean Squared Error (MSE) by $43.9\%$. For the state-of-the-art (SOTA) model, the MSE is reduced by $33.3\%$.
Abstract:Out-of-distribution (OOD) detection is essential for the reliability of ML models. Most existing methods for OOD detection learn a fixed decision criterion from a given in-distribution dataset and apply it universally to decide if a data point is OOD. Recent work~\cite{fang2022is} shows that given only in-distribution data, it is impossible to reliably detect OOD data without extra assumptions. Motivated by the theoretical result and recent exploration of test-time adaptation methods, we propose a Non-Parametric Test Time \textbf{Ada}ptation framework for \textbf{O}ut-Of-\textbf{D}istribution \textbf{D}etection (\abbr). Unlike conventional methods, \abbr utilizes online test samples for model adaptation during testing, enhancing adaptability to changing data distributions. The framework incorporates detected OOD instances into decision-making, reducing false positive rates, particularly when ID and OOD distributions overlap significantly. We demonstrate the effectiveness of \abbr through comprehensive experiments on multiple OOD detection benchmarks, extensive empirical studies show that \abbr significantly improves the performance of OOD detection over state-of-the-art methods. Specifically, \abbr reduces the false positive rate (FPR95) by $23.23\%$ on the CIFAR-10 benchmarks and $38\%$ on the ImageNet-1k benchmarks compared to the advanced methods. Lastly, we theoretically verify the effectiveness of \abbr.
Abstract:A fundamental challenge for machine learning models is how to generalize learned models for out-of-distribution (OOD) data. Among various approaches, exploiting invariant features by Domain Adversarial Training (DAT) received widespread attention. Despite its success, we observe training instability from DAT, mostly due to over-confident domain discriminator and environment label noise. To address this issue, we proposed Environment Label Smoothing (ELS), which encourages the discriminator to output soft probability, which thus reduces the confidence of the discriminator and alleviates the impact of noisy environment labels. We demonstrate, both experimentally and theoretically, that ELS can improve training stability, local convergence, and robustness to noisy environment labels. By incorporating ELS with DAT methods, we are able to yield state-of-art results on a wide range of domain generalization/adaptation tasks, particularly when the environment labels are highly noisy.
Abstract:Visual tracking plays an important role in perception system, which is a crucial part of intelligent transportation. Recently, Siamese network is a hot topic for visual tracking to estimate moving targets' trajectory, due to its superior accuracy and simple framework. In general, Siamese tracking algorithms, supervised by logistic loss and triplet loss, increase the value of inner product between exemplar template and positive sample while reduce the value of inner product with background sample. However, the distractors from different exemplars are not considered by mentioned loss functions, which limit the feature models' discrimination. In this paper, a new exemplar loss integrated with logistic loss is proposed to enhance the feature model's discrimination by reducing inner products among exemplars. Without the bells and whistles, the proposed algorithm outperforms the methods supervised by logistic loss or triplet loss. Numerical results suggest that the newly developed algorithm achieves comparable performance in public benchmarks.
Abstract:Recurrent and convolutional neural networks are the most common architectures used for time series forecasting in deep learning literature. These networks use parameter sharing by repeating a set of fixed architectures with fixed parameters over time or space. The result is that the overall architecture is time-invariant (shift-invariant in the spatial domain) or stationary. We argue that time-invariance can reduce the capacity to perform multi-step-ahead forecasting, where modelling the dynamics at a range of scales and resolutions is required. We propose ForecastNet which uses a deep feed-forward architecture to provide a time-variant model. An additional novelty of ForecastNet is interleaved outputs, which we show assist in mitigating vanishing gradients. ForecastNet is demonstrated to outperform statistical and deep learning benchmark models on several datasets.