Abstract:In open-world scenarios, where both novel classes and domains may exist, an ideal segmentation model should detect anomaly classes for safety and generalize to new domains. However, existing methods often struggle to distinguish between domain-level and semantic-level distribution shifts, leading to poor out-of-distribution (OOD) detection or domain generalization performance. In this work, we aim to equip the model to generalize effectively to covariate-shift regions while precisely identifying semantic-shift regions. To achieve this, we design a novel generative augmentation method to produce coherent images that incorporate both anomaly (or novel) objects and various covariate shifts at both image and object levels. Furthermore, we introduce a training strategy that recalibrates uncertainty specifically for semantic shifts and enhances the feature extractor to align features associated with domain shifts. We validate the effectiveness of our method across benchmarks featuring both semantic and domain shifts. Our method achieves state-of-the-art performance across all benchmarks for both OOD detection and domain generalization. Code is available at https://github.com/gaozhitong/MultiShiftSeg.
Abstract:We tackle the generalized category discovery (GCD) problem, which aims to discover novel classes in unlabeled datasets by leveraging the knowledge of known classes. Previous works utilize the known class knowledge through shared representation spaces. Despite their progress, our analysis experiments show that novel classes can achieve impressive clustering results on the feature space of a known class pre-trained model, suggesting that existing methods may not fully utilize known class knowledge. To address it, we introduce a novel concept learning framework for GCD, named ConceptGCD, that categorizes concepts into two types: derivable and underivable from known class concepts, and adopts a stage-wise learning strategy to learn them separately. Specifically, our framework first extracts known class concepts by a known class pre-trained model and then produces derivable concepts from them by a generator layer with a covariance-augmented loss. Subsequently, we expand the generator layer to learn underivable concepts in a balanced manner ensured by a concept score normalization strategy and integrate a contrastive loss to preserve previously learned concepts. Extensive experiments on various benchmark datasets demonstrate the superiority of our approach over the previous state-of-the-art methods. Code will be available soon.
Abstract:We address the challenge of online Reinforcement Learning from Human Feedback (RLHF) with a focus on self-rewarding alignment methods. In online RLHF, obtaining feedback requires interaction with the environment, which can be costly when using additional reward models or the GPT-4 API. Current self-rewarding approaches rely heavily on the discriminator's judgment capabilities, which are effective for large-scale models but challenging to transfer to smaller ones. To address these limitations, we propose a novel, only-prompting self-rewarding online algorithm that generates preference datasets without relying on judgment capabilities. Additionally, we employ fine-grained arithmetic control over the optimality gap between positive and negative examples, generating more hard negatives in the later stages of training to help the model better capture subtle human preferences. Finally, we conduct extensive experiments on two base models, Mistral-7B and Mistral-Instruct-7B, which significantly bootstrap the performance of the reference model, achieving 34.5% in the Length-controlled Win Rates of AlpacaEval 2.0.
Abstract:We tackle the novel class discovery in point cloud segmentation, which discovers novel classes based on the semantic knowledge of seen classes. Existing work proposes an online point-wise clustering method with a simplified equal class-size constraint on the novel classes to avoid degenerate solutions. However, the inherent imbalanced distribution of novel classes in point clouds typically violates the equal class-size constraint. Moreover, point-wise clustering ignores the rich spatial context information of objects, which results in less expressive representation for semantic segmentation. To address the above challenges, we propose a novel self-labeling strategy that adaptively generates high-quality pseudo-labels for imbalanced classes during model training. In addition, we develop a dual-level representation that incorporates regional consistency into the point-level classifier learning, reducing noise in generated segmentation. Finally, we conduct extensive experiments on two widely used datasets, SemanticKITTI and SemanticPOSS, and the results show our method outperforms the state of the art by a large margin.
Abstract:While LLM-Based agents, which use external tools to solve complex problems, have made significant progress, benchmarking their ability is challenging, thereby hindering a clear understanding of their limitations. In this paper, we propose an interactive evaluation framework, named CIBench, to comprehensively assess LLMs' ability to utilize code interpreters for data science tasks. Our evaluation framework includes an evaluation dataset and two evaluation modes. The evaluation dataset is constructed using an LLM-human cooperative approach and simulates an authentic workflow by leveraging consecutive and interactive IPython sessions. The two evaluation modes assess LLMs' ability with and without human assistance. We conduct extensive experiments to analyze the ability of 24 LLMs on CIBench and provide valuable insights for future LLMs in code interpreter utilization.
Abstract:Scene graph generation (SGG) aims to parse a visual scene into an intermediate graph representation for downstream reasoning tasks. Despite recent advancements, existing methods struggle to generate scene graphs with novel visual relation concepts. To address this challenge, we introduce a new open-vocabulary SGG framework based on sequence generation. Our framework leverages vision-language pre-trained models (VLM) by incorporating an image-to-graph generation paradigm. Specifically, we generate scene graph sequences via image-to-text generation with VLM and then construct scene graphs from these sequences. By doing so, we harness the strong capabilities of VLM for open-vocabulary SGG and seamlessly integrate explicit relational modeling for enhancing the VL tasks. Experimental results demonstrate that our design not only achieves superior performance with an open vocabulary but also enhances downstream vision-language task performance through explicit relation modeling knowledge.
Abstract:Deep clustering, which learns representation and semantic clustering without labels information, poses a great challenge for deep learning-based approaches. Despite significant progress in recent years, most existing methods focus on uniformly distributed datasets, significantly limiting the practical applicability of their methods. In this paper, we propose a more practical problem setting named deep imbalanced clustering, where the underlying classes exhibit an imbalance distribution. To address this challenge, we introduce a novel optimal transport-based pseudo-label learning framework. Our framework formulates pseudo-label generation as a Semantic-regularized Progressive Partial Optimal Transport (SP$^2$OT) problem, which progressively transports each sample to imbalanced clusters under several prior distribution and semantic relation constraints, thus generating high-quality and imbalance-aware pseudo-labels. To solve SP$^2$OT, we develop a Majorization-Minimization-based optimization algorithm. To be more precise, we employ the strategy of majorization to reformulate the SP$^2$OT problem into a Progressive Partial Optimal Transport problem, which can be transformed into an unbalanced optimal transport problem with augmented constraints and can be solved efficiently by a fast matrix scaling algorithm. Experiments on various datasets, including a human-curated long-tailed CIFAR100, challenging ImageNet-R, and large-scale subsets of fine-grained iNaturalist2018 datasets, demonstrate the superiority of our method.
Abstract:Generative vision-language models (VLMs) have shown impressive performance in zero-shot vision-language tasks like image captioning and visual question answering. However, improving their zero-shot reasoning typically requires second-stage instruction tuning, which relies heavily on human-labeled or large language model-generated annotation, incurring high labeling costs. To tackle this challenge, we introduce Image-Conditioned Caption Correction (ICCC), a novel pre-training task designed to enhance VLMs' zero-shot performance without the need for labeled task-aware data. The ICCC task compels VLMs to rectify mismatches between visual and language concepts, thereby enhancing instruction following and text generation conditioned on visual inputs. Leveraging language structure and a lightweight dependency parser, we construct data samples of ICCC task from image-text datasets with low labeling and computation costs. Experimental results on BLIP-2 and InstructBLIP demonstrate significant improvements in zero-shot image-text generation-based VL tasks through ICCC instruction tuning.
Abstract:Scene graph generation aims to capture detailed spatial and semantic relationships between objects in an image, which is challenging due to incomplete labelling, long-tailed relationship categories, and relational semantic overlap. Existing Transformer-based methods either employ distinct queries for objects and predicates or utilize holistic queries for relation triplets and hence often suffer from limited capacity in learning low-frequency relationships. In this paper, we present a new Transformer-based method, called DSGG, that views scene graph detection as a direct graph prediction problem based on a unique set of graph-aware queries. In particular, each graph-aware query encodes a compact representation of both the node and all of its relations in the graph, acquired through the utilization of a relaxed sub-graph matching during the training process. Moreover, to address the problem of relational semantic overlap, we utilize a strategy for relation distillation, aiming to efficiently learn multiple instances of semantic relationships. Extensive experiments on the VG and the PSG datasets show that our model achieves state-of-the-art results, showing a significant improvement of 3.5\% and 6.7\% in mR@50 and mR@100 for the scene-graph generation task and achieves an even more substantial improvement of 8.5\% and 10.3\% in mR@50 and mR@100 for the panoptic scene graph generation task. Code is available at \url{https://github.com/zeeshanhayder/DSGG}.
Abstract:In this paper, we introduce RealDex, a pioneering dataset capturing authentic dexterous hand grasping motions infused with human behavioral patterns, enriched by multi-view and multimodal visual data. Utilizing a teleoperation system, we seamlessly synchronize human-robot hand poses in real time. This collection of human-like motions is crucial for training dexterous hands to mimic human movements more naturally and precisely. RealDex holds immense promise in advancing humanoid robot for automated perception, cognition, and manipulation in real-world scenarios. Moreover, we introduce a cutting-edge dexterous grasping motion generation framework, which aligns with human experience and enhances real-world applicability through effectively utilizing Multimodal Large Language Models. Extensive experiments have demonstrated the superior performance of our method on RealDex and other open datasets. The complete dataset and code will be made available upon the publication of this work.