Abstract:Temporal information extraction (IE) aims to extract structured temporal information from unstructured text, thereby uncovering the implicit timelines within. This technique is applied across domains such as healthcare, newswire, and intelligence analysis, aiding models in these areas to perform temporal reasoning and enabling human users to grasp the temporal structure of text. Transformer-based pre-trained language models have produced revolutionary advancements in natural language processing, demonstrating exceptional performance across a multitude of tasks. Despite the achievements garnered by Transformer-based approaches in temporal IE, there is a lack of comprehensive reviews on these endeavors. In this paper, we aim to bridge this gap by systematically summarizing and analyzing the body of work on temporal IE using Transformers while highlighting potential future research directions.
Abstract:Traditional approaches to outage-constrained beamforming optimization rely on statistical assumptions about channel distributions and estimation errors. However, the resulting outage probability guarantees are only valid when these assumptions accurately reflect reality. This paper tackles the fundamental challenge of providing outage probability guarantees that remain robust regardless of specific channel or estimation error models. To achieve this, we propose a two-stage framework: (i) construction of a channel uncertainty set using a generative channel model combined with conformal prediction, and (ii) robust beamforming via the solution of a min-max optimization problem. The proposed method separates the modeling and optimization tasks, enabling principled uncertainty quantification and robust decision-making. Simulation results confirm the effectiveness and reliability of the framework in achieving model-agnostic outage guarantees.
Abstract:Models of dense prediction based on traditional Artificial Neural Networks (ANNs) require a lot of energy, especially for image restoration tasks. Currently, neural networks based on the SNN (Spiking Neural Network) framework are beginning to make their mark in the field of image restoration, especially as they typically use less than 10\% of the energy of ANNs with the same architecture. However, training an SNN is much more expensive than training an ANN, due to the use of the heuristic gradient descent strategy. In other words, the process of SNN's potential membrane signal changing from sparse to dense is very slow, which affects the convergence of the whole model.To tackle this problem, we propose a novel distillation technique, called asymmetric framework (ANN-SNN) distillation, in which the teacher is an ANN and the student is an SNN. Specifically, we leverage the intermediate features (feature maps) learned by the ANN as hints to guide the training process of the SNN. This approach not only accelerates the convergence of the SNN but also improves its final performance, effectively bridging the gap between the efficiency of the SNN and the superior learning capabilities of ANN. Extensive experimental results show that our designed SNN-based image restoration model, which has only 1/300 the number of parameters of the teacher network and 1/50 the energy consumption of the teacher network, is as good as the teacher network in some denoising tasks.
Abstract:Large Language Models (LLMs) face computational inefficiencies and redundant processing when handling long context inputs, prompting a focus on compression techniques. While existing semantic vector-based compression methods achieve promising performance, these methods fail to account for the intrinsic information density variations between context chunks, instead allocating soft tokens uniformly across context chunks. This uniform distribution inevitably diminishes allocation to information-critical regions. To address this, we propose Dynamic Allocation of Soft Tokens (DAST), a simple yet effective method that leverages the LLM's intrinsic understanding of contextual relevance to guide compression. DAST combines perplexity-based local information with attention-driven global information to dynamically allocate soft tokens to the informative-rich chunks, enabling effective, context-aware compression. Experimental results across multiple benchmarks demonstrate that DAST surpasses state-of-the-art methods.
Abstract:Chinese grammatical error correction (CGEC) aims to detect and correct errors in the input Chinese sentences. Recently, Pre-trained Language Models (PLMS) have been employed to improve the performance. However, current approaches ignore that correction difficulty varies across different instances and treat these samples equally, enhancing the challenge of model learning. To address this problem, we propose a multi-granularity Curriculum Learning (CL) framework. Specifically, we first calculate the correction difficulty of these samples and feed them into the model from easy to hard batch by batch. Then Instance-Level CL is employed to help the model optimize in the appropriate direction automatically by regulating the loss function. Extensive experimental results and comprehensive analyses of various datasets prove the effectiveness of our method.
Abstract:With the rising imaging resolution of handheld devices, existing multi-exposure image fusion algorithms struggle to generate a high dynamic range image with ultra-high resolution in real-time. Apart from that, there is a trend to design a manageable and editable algorithm as the different needs of real application scenarios. To tackle these issues, we introduce 3D LUT technology, which can enhance images with ultra-high-definition (UHD) resolution in real time on resource-constrained devices. However, since the fusion of information from multiple images with different exposure rates is uncertain, and this uncertainty significantly trials the generalization power of the 3D LUT grid. To address this issue and ensure a robust learning space for the model, we propose using a teacher-student network to model the uncertainty on the 3D LUT grid.Furthermore, we provide an editable mode for the multi-exposure image fusion algorithm by using the implicit representation function to match the requirements in different scenarios. Extensive experiments demonstrate that our proposed method is highly competitive in efficiency and accuracy.
Abstract:Multimodal models typically combine a powerful large language model (LLM) with a vision encoder and are then trained on multimodal data via instruction tuning. While this process adapts LLMs to multimodal settings, it remains unclear whether this adaptation compromises their original language reasoning capabilities. In this work, we explore the effects of multimodal instruction tuning on language reasoning performance. We focus on LLaVA, a leading multimodal framework that integrates LLMs such as Vicuna or Mistral with the CLIP vision encoder. We compare the performance of the original LLMs with their multimodal-adapted counterparts across eight language reasoning tasks. Our experiments yield several key insights. First, the impact of multimodal learning varies between Vicuna and Mistral: we observe a degradation in language reasoning for Mistral but improvements for Vicuna across most tasks. Second, while multimodal instruction learning consistently degrades performance on mathematical reasoning tasks (e.g., GSM8K), it enhances performance on commonsense reasoning tasks (e.g., CommonsenseQA). Finally, we demonstrate that a training-free model merging technique can effectively mitigate the language reasoning degradation observed in multimodal-adapted Mistral and even improve performance on visual tasks.
Abstract:Ultra-high-definition (UHD) image restoration is vital for applications demanding exceptional visual fidelity, yet existing methods often face a trade-off between restoration quality and efficiency, limiting their practical deployment. In this paper, we propose TSFormer, an all-in-one framework that integrates \textbf{T}rusted learning with \textbf{S}parsification to boost both generalization capability and computational efficiency in UHD image restoration. The key is that only a small amount of token movement is allowed within the model. To efficiently filter tokens, we use Min-$p$ with random matrix theory to quantify the uncertainty of tokens, thereby improving the robustness of the model. Our model can run a 4K image in real time (40fps) with 3.38 M parameters. Extensive experiments demonstrate that TSFormer achieves state-of-the-art restoration quality while enhancing generalization and reducing computational demands. In addition, our token filtering method can be applied to other image restoration models to effectively accelerate inference and maintain performance.
Abstract:Knowledge graphs (KGs) generated by large language models (LLMs) are becoming increasingly valuable for Retrieval-Augmented Generation (RAG) applications that require knowledge-intensive reasoning. However, existing KG extraction methods predominantly rely on prompt-based approaches, which are inefficient for processing large-scale corpora. These approaches often suffer from information loss, particularly with long documents, due to the lack of specialized design for KG construction. Additionally, there is a gap in evaluation datasets and methodologies for ontology-free KG construction. To overcome these limitations, we propose SynthKG, a multi-step, document-level ontology-free KG synthesis workflow based on LLMs. By fine-tuning a smaller LLM on the synthesized document-KG pairs, we streamline the multi-step process into a single-step KG generation approach called Distill-SynthKG, substantially reducing the number of LLM inference calls. Furthermore, we re-purpose existing question-answering datasets to establish KG evaluation datasets and introduce new evaluation metrics. Using KGs produced by Distill-SynthKG, we also design a novel graph-based retrieval framework for RAG. Experimental results demonstrate that Distill-SynthKG not only surpasses all baseline models in KG quality -- including models up to eight times larger -- but also consistently excels in retrieval and question-answering tasks. Our proposed graph retrieval framework also outperforms all KG-retrieval methods across multiple benchmark datasets. We release the SynthKG dataset and Distill-SynthKG model publicly to support further research and development.
Abstract:Change Detection (CD) enables the identification of alterations between images of the same area captured at different times. However, existing CD methods still struggle to address pseudo changes resulting from domain information differences in multi-temporal images and instances of detail errors caused by the loss and contamination of detail features during the upsampling process in the network. To address this, we propose a bi-temporal Gaussian distribution feature-dependent network (BGFD). Specifically, we first introduce the Gaussian noise domain disturbance (GNDD) module, which approximates distribution using image statistical features to characterize domain information, samples noise to perturb the network for learning redundant domain information, addressing domain information differences from a more fundamental perspective. Additionally, within the feature dependency facilitation (FDF) module, we integrate a novel mutual information difference loss ($L_{MI}$) and more sophisticated attention mechanisms to enhance the capabilities of the network, ensuring the acquisition of essential domain information. Subsequently, we have designed a novel detail feature compensation (DFC) module, which compensates for detail feature loss and contamination introduced during the upsampling process from the perspectives of enhancing local features and refining global features. The BGFD has effectively reduced pseudo changes and enhanced the detection capability of detail information. It has also achieved state-of-the-art performance on four publicly available datasets - DSIFN-CD, SYSU-CD, LEVIR-CD, and S2Looking, surpassing baseline models by +8.58%, +1.28%, +0.31%, and +3.76% respectively, in terms of the F1-Score metric.