Abstract:CLIP is one of the most popular foundational models and is heavily used for many vision-language tasks. However, little is known about the inner workings of CLIP. While recent work has proposed decomposition-based interpretability methods for identifying textual descriptions of attention heads in CLIP, the implications of conceptual consistency in these text labels on interpretability and model performance has not been explored. To bridge this gap, we study the conceptual consistency of text descriptions for attention heads in CLIP-like models. We conduct extensive experiments on six different models from OpenAI and OpenCLIP which vary by size, type of pre-training data and patch size. We propose Concept Consistency Score (CCS), a novel interpretability metric that measures how consistently individual attention heads in CLIP models align with specific concepts. To assign concept labels to heads, we use in-context learning with ChatGPT, guided by a few manually-curated examples, and validate these labels using an LLM-as-a-judge approach. Our soft-pruning experiments reveal that high CCS heads are critical for preserving model performance, as pruning them leads to a significantly larger performance drop than pruning random or low CCS heads. Notably, we find that high CCS heads capture essential concepts and play a key role in out-of-domain detection, concept-specific reasoning, and video-language understanding. These results position CCS as a powerful interpretability metric for analyzing CLIP-like models.
Abstract:Despite recent efforts in understanding the compression impact on large language models (LLMs) in terms of their downstream task performance and trustworthiness on relatively simpler uni-modal benchmarks (for example, question answering, common sense reasoning), their detailed study on multi-modal Large Vision-Language Models (LVLMs) is yet to be unveiled. Towards mitigating this gap, we present LVLM-Compress-Bench, a framework to first thoroughly study the broad impact of compression on the generative performance of LVLMs with multi-modal input driven tasks. In specific, we consider two major classes of compression for autoregressive models, namely KV cache and weight compression, for the dynamically growing intermediate cache and static weights, respectively. We use four LVLM variants of the popular LLaVA framework to present our analysis via integrating various state-of-the-art KV and weight compression methods including uniform, outlier-reduced, and group quantization for the KV cache and weights. With this framework we demonstrate on ten different multi-modal datasets with different capabilities including recognition, knowledge, language generation, spatial awareness, visual reasoning, hallucination and visual illusion identification, toxicity, stereotypes and bias. In specific, our framework demonstrates the compression impact on both general and ethically critical metrics leveraging a combination of real world and synthetic datasets to encompass diverse societal intersectional attributes. Extensive experimental evaluations yield diverse and intriguing observations on the behavior of LVLMs at different quantization budget of KV and weights, in both maintaining and losing performance as compared to the baseline model with FP16 data format. Code will be open-sourced at https://github.com/opengear-project/LVLM-compress-bench.
Abstract:Peer review is a critical process for ensuring the integrity of published scientific research. Confidence in this process is predicated on the assumption that experts in the relevant domain give careful consideration to the merits of manuscripts which are submitted for publication. With the recent rapid advancements in large language models (LLMs), a new risk to the peer review process is that negligent reviewers will rely on LLMs to perform the often time consuming process of reviewing a paper. However, there is a lack of existing resources for benchmarking the detectability of AI text in the domain of peer review. To address this deficiency, we introduce a comprehensive dataset containing a total of 788,984 AI-written peer reviews paired with corresponding human reviews, covering 8 years of papers submitted to each of two leading AI research conferences (ICLR and NeurIPS). We use this new resource to evaluate the ability of 18 existing AI text detection algorithms to distinguish between peer reviews written by humans and different state-of-the-art LLMs. Motivated by the shortcomings of existing methods, we propose a new detection approach which surpasses existing methods in the identification of AI written peer reviews. Our work reveals the difficulty of identifying AI-generated text at the individual peer review level, highlighting the urgent need for new tools and methods to detect this unethical use of generative AI.
Abstract:Large Vision Language Models (LVLMs) have achieved significant progress in integrating visual and textual inputs for multimodal reasoning. However, a recurring challenge is ensuring these models utilize visual information as effectively as linguistic content when both modalities are necessary to formulate an accurate answer. We hypothesize that hallucinations arise due to the lack of effective visual grounding in current LVLMs. This issue extends to vision-language benchmarks, where it is difficult to make the image indispensable for accurate answer generation, particularly in vision question-answering tasks. In this work, we introduce FiVL, a novel method for constructing datasets designed to train LVLMs for enhanced visual grounding and to evaluate their effectiveness in achieving it. These datasets can be utilized for both training and assessing an LVLM's ability to use image content as substantive evidence rather than relying solely on linguistic priors, providing insights into the model's reliance on visual information. To demonstrate the utility of our dataset, we introduce an innovative training task that outperforms baselines alongside a validation method and application for explainability. The code is available at https://github.com/IntelLabs/fivl.
Abstract:Are generative pre-trained transformer (GPT) models only trained to predict the next token, or do they implicitly learn a world model from which a sequence is generated one token at a time? We examine this question by deriving a causal interpretation of the attention mechanism in GPT, and suggesting a causal world model that arises from this interpretation. Furthermore, we propose that GPT-models, at inference time, can be utilized for zero-shot causal structure learning for in-distribution sequences. Empirical evaluation is conducted in a controlled synthetic environment using the setup and rules of the Othello board game. A GPT, pre-trained on real-world games played with the intention of winning, is tested on synthetic data that only adheres to the game rules. We find that the GPT model tends to generate next moves that adhere to the game rules for sequences for which the attention mechanism encodes a causal structure with high confidence. In general, in cases for which the GPT model generates moves that do not adhere to the game rules, it also fails to capture any causal structure.
Abstract:Although capable of generating creative text, Large Language Models (LLMs) are poor judges of what constitutes "creativity". In this work, we show that we can leverage this knowledge of how to write creatively in order to better judge what is creative. We take a mechanistic approach that extracts differences in the internal states of an LLM when prompted to respond "boringly" or "creatively" to provide a robust measure of creativity that corresponds strongly with human judgment. We also show these internal state differences can be applied to enhance the creativity of generated text at inference time.
Abstract:Multimodal models typically combine a powerful large language model (LLM) with a vision encoder and are then trained on multimodal data via instruction tuning. While this process adapts LLMs to multimodal settings, it remains unclear whether this adaptation compromises their original language reasoning capabilities. In this work, we explore the effects of multimodal instruction tuning on language reasoning performance. We focus on LLaVA, a leading multimodal framework that integrates LLMs such as Vicuna or Mistral with the CLIP vision encoder. We compare the performance of the original LLMs with their multimodal-adapted counterparts across eight language reasoning tasks. Our experiments yield several key insights. First, the impact of multimodal learning varies between Vicuna and Mistral: we observe a degradation in language reasoning for Mistral but improvements for Vicuna across most tasks. Second, while multimodal instruction learning consistently degrades performance on mathematical reasoning tasks (e.g., GSM8K), it enhances performance on commonsense reasoning tasks (e.g., CommonsenseQA). Finally, we demonstrate that a training-free model merging technique can effectively mitigate the language reasoning degradation observed in multimodal-adapted Mistral and even improve performance on visual tasks.
Abstract:While Large Vision Language Models (LVLMs) have become masterly capable in reasoning over human prompts and visual inputs, they are still prone to producing responses that contain misinformation. Identifying incorrect responses that are not grounded in evidence has become a crucial task in building trustworthy AI. Explainability methods such as gradient-based relevancy maps on LVLM outputs can provide an insight on the decision process of models, however these methods are often computationally expensive and not suited for on-the-fly validation of outputs. In this work, we propose FastRM, an effective way for predicting the explainable Relevancy Maps of LVLM models. Experimental results show that employing FastRM leads to a 99.8% reduction in compute time for relevancy map generation and an 44.4% reduction in memory footprint for the evaluated LVLM, making explainable AI more efficient and practical, thereby facilitating its deployment in real-world applications.
Abstract:Large Multi-Modal Models (LMMs) have demonstrated impressive capabilities as general-purpose chatbots that can engage in conversations about a provided input, such as an image. However, their responses are influenced by societal biases present in their training datasets, leading to undesirable differences in how the model responds when presented with images depicting people of different demographics. In this work, we propose a novel debiasing framework for LMMs that directly removes biased representations during text generation to decrease outputs related to protected attributes, or even representing them internally. Our proposed method is training-free; given a single image and a list of target attributes, we can ablate the corresponding representations with just one step of gradient descent on the image itself. Our experiments show that not only can we can minimize the propensity of LMMs to generate text related to protected attributes, but we can improve sentiment and even simply use synthetic data to inform the ablation while retaining language modeling capabilities on real data such as COCO or FACET. Furthermore, we find the resulting generations from a debiased LMM exhibit similar accuracy as a baseline biased model, showing that debiasing effects can be achieved without sacrificing model performance.
Abstract:Knowledge graphs (KGs) generated by large language models (LLMs) are becoming increasingly valuable for Retrieval-Augmented Generation (RAG) applications that require knowledge-intensive reasoning. However, existing KG extraction methods predominantly rely on prompt-based approaches, which are inefficient for processing large-scale corpora. These approaches often suffer from information loss, particularly with long documents, due to the lack of specialized design for KG construction. Additionally, there is a gap in evaluation datasets and methodologies for ontology-free KG construction. To overcome these limitations, we propose SynthKG, a multi-step, document-level ontology-free KG synthesis workflow based on LLMs. By fine-tuning a smaller LLM on the synthesized document-KG pairs, we streamline the multi-step process into a single-step KG generation approach called Distill-SynthKG, substantially reducing the number of LLM inference calls. Furthermore, we re-purpose existing question-answering datasets to establish KG evaluation datasets and introduce new evaluation metrics. Using KGs produced by Distill-SynthKG, we also design a novel graph-based retrieval framework for RAG. Experimental results demonstrate that Distill-SynthKG not only surpasses all baseline models in KG quality -- including models up to eight times larger -- but also consistently excels in retrieval and question-answering tasks. Our proposed graph retrieval framework also outperforms all KG-retrieval methods across multiple benchmark datasets. We release the SynthKG dataset and Distill-SynthKG model publicly to support further research and development.