Abstract:Recent advancements in computational chemistry have leveraged the power of trans-former-based language models, such as MoLFormer, pre-trained using a vast amount of simplified molecular-input line-entry system (SMILES) sequences, to understand and predict molecular properties and activities, a critical step in fields like drug discovery and materials science. To further improve performance, researchers have introduced graph neural networks with graph-based molecular representations, such as GEM, incorporating the topology, geometry, 2D or even 3D structures of molecules into pre-training. While most of molecular graphs in existing studies were automatically converted from SMILES sequences, it is to assume that transformer-based language models might be able to implicitly learn structure-aware representations from SMILES sequences. In this paper, we propose \ours{} -- a SMILES-based \underline{\em M}olecular \underline{\em L}anguage \underline{\em M}odel, which randomly masking SMILES subsequences corresponding to specific molecular \underline{\em F}unctional \underline{\em G}roups to incorporate structure information of atoms during the pre-training phase. This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities. Extensive experimental evaluations across 11 benchmark classification and regression tasks in the chemical domain demonstrate the robustness and superiority of \ours{}. Our findings reveal that \ours{} outperforms existing pre-training models, either based on SMILES or graphs, in 9 out of the 11 downstream tasks, ranking as a close second in the remaining ones.
Abstract:Large Language Models (LLMs) have greatly pushed forward advancements in natural language processing, yet their high memory and computational demands hinder practical deployment. Binarization, as an effective compression technique, can shrink model weights to just 1 bit, significantly reducing the high demands on computation and memory. However, current binarization methods struggle to narrow the distribution gap between binarized and full-precision weights, while also overlooking the column deviation in LLM weight distribution. To tackle these issues, we propose ARB-LLM, a novel 1-bit post-training quantization (PTQ) technique tailored for LLMs. To narrow the distribution shift between binarized and full-precision weights, we first design an alternating refined binarization (ARB) algorithm to progressively update the binarization parameters, which significantly reduces the quantization error. Moreover, considering the pivot role of calibration data and the column deviation in LLM weights, we further extend ARB to ARB-X and ARB-RC. In addition, we refine the weight partition strategy with column-group bitmap (CGB), which further enhance performance. Equipping ARB-X and ARB-RC with CGB, we obtain ARB-LLM$_\text{X}$ and ARB-LLM$_\text{RC}$ respectively, which significantly outperform state-of-the-art (SOTA) binarization methods for LLMs. As a binary PTQ method, our ARB-LLM$_\text{RC}$ is the first to surpass FP16 models of the same size. The code and models will be available at https://github.com/ZHITENGLI/ARB-LLM.
Abstract:Image quality assessment (IQA) serves as the golden standard for all models' performance in nearly all computer vision fields. However, it still suffers from poor out-of-distribution generalization ability and expensive training costs. To address these problems, we propose Dog-IQA, a standard-guided zero-shot mix-grained IQA method, which is training-free and utilizes the exceptional prior knowledge of multimodal large language models (MLLMs). To obtain accurate IQA scores, namely scores consistent with humans, we design an MLLM-based inference pipeline that imitates human experts. In detail, Dog-IQA applies two techniques. First, Dog-IQA objectively scores with specific standards that utilize MLLM's behavior pattern and minimize the influence of subjective factors. Second, Dog-IQA comprehensively takes local semantic objects and the whole image as input and aggregates their scores, leveraging local and global information. Our proposed Dog-IQA achieves state-of-the-art (SOTA) performance compared with training-free methods, and competitive performance compared with training-based methods in cross-dataset scenarios. Our code and models will be available at https://github.com/Kai-Liu001/Dog-IQA.
Abstract:Existing 3D mask learning methods encounter performance bottlenecks under limited data, and our objective is to overcome this limitation. In this paper, we introduce a triple point masking scheme, named TPM, which serves as a scalable framework for pre-training of masked autoencoders to achieve multi-mask learning for 3D point clouds. Specifically, we augment the baselines with two additional mask choices (i.e., medium mask and low mask) as our core insight is that the recovery process of an object can manifest in diverse ways. Previous high-masking schemes focus on capturing the global representation but lack the fine-grained recovery capability, so that the generated pre-trained weights tend to play a limited role in the fine-tuning process. With the support of the proposed TPM, available methods can exhibit more flexible and accurate completion capabilities, enabling the potential autoencoder in the pre-training stage to consider multiple representations of a single 3D object. In addition, an SVM-guided weight selection module is proposed to fill the encoder parameters for downstream networks with the optimal weight during the fine-tuning stage, maximizing linear accuracy and facilitating the acquisition of intricate representations for new objects. Extensive experiments show that the four baselines equipped with the proposed TPM achieve comprehensive performance improvements on various downstream tasks.
Abstract:Learning to rank (LTR) is widely employed in web searches to prioritize pertinent webpages from retrieved content based on input queries. However, traditional LTR models encounter two principal obstacles that lead to suboptimal performance: (1) the lack of well-annotated query-webpage pairs with ranking scores covering a diverse range of search query popularities, which hampers their ability to address queries across the popularity spectrum, and (2) inadequately trained models that fail to induce generalized representations for LTR, resulting in overfitting. To address these challenges, we propose a \emph{\uline{G}enerative \uline{S}emi-\uline{S}upervised \uline{P}re-trained} (GS2P) LTR model. We conduct extensive offline experiments on both a publicly available dataset and a real-world dataset collected from a large-scale search engine. Furthermore, we deploy GS2P in a large-scale web search engine with realistic traffic, where we observe significant improvements in the real-world application.
Abstract:Both Transformer and Graph Neural Networks (GNNs) have been employed in the domain of learning to rank (LTR). However, these approaches adhere to two distinct yet complementary problem formulations: ranking score regression based on query-webpage pairs, and link prediction within query-webpage bipartite graphs, respectively. While it is possible to pre-train GNNs or Transformers on source datasets and subsequently fine-tune them on sparsely annotated LTR datasets, the distributional shifts between the pair-based and bipartite graph domains present significant challenges in integrating these heterogeneous models into a unified LTR framework at web scale. To address this, we introduce the novel MPGraf model, which leverages a modular and capsule-based pre-training strategy, aiming to cohesively integrate the regression capabilities of Transformers with the link prediction strengths of GNNs. We conduct extensive offline and online experiments to rigorously evaluate the performance of MPGraf.
Abstract:Low-bit quantization has become widespread for compressing image super-resolution (SR) models for edge deployment, which allows advanced SR models to enjoy compact low-bit parameters and efficient integer/bitwise constructions for storage compression and inference acceleration, respectively. However, it is notorious that low-bit quantization degrades the accuracy of SR models compared to their full-precision (FP) counterparts. Despite several efforts to alleviate the degradation, the transformer-based SR model still suffers severe degradation due to its distinctive activation distribution. In this work, we present a dual-stage low-bit post-training quantization (PTQ) method for image super-resolution, namely 2DQuant, which achieves efficient and accurate SR under low-bit quantization. The proposed method first investigates the weight and activation and finds that the distribution is characterized by coexisting symmetry and asymmetry, long tails. Specifically, we propose Distribution-Oriented Bound Initialization (DOBI), using different searching strategies to search a coarse bound for quantizers. To obtain refined quantizer parameters, we further propose Distillation Quantization Calibration (DQC), which employs a distillation approach to make the quantized model learn from its FP counterpart. Through extensive experiments on different bits and scaling factors, the performance of DOBI can reach the state-of-the-art (SOTA) while after stage two, our method surpasses existing PTQ in both metrics and visual effects. 2DQuant gains an increase in PSNR as high as 4.52dB on Set5 (x2) compared with SOTA when quantized to 2-bit and enjoys a 3.60x compression ratio and 5.08x speedup ratio. The code and models will be available at https://github.com/Kai-Liu001/2DQuant.
Abstract:Advanced diffusion models (DMs) perform impressively in image super-resolution (SR), but the high memory and computational costs hinder their deployment. Binarization, an ultra-compression algorithm, offers the potential for effectively accelerating DMs. Nonetheless, due to the model structure and the multi-step iterative attribute of DMs, existing binarization methods result in significant performance degradation. In this paper, we introduce a novel binarized diffusion model, BI-DiffSR, for image SR. First, for the model structure, we design a UNet architecture optimized for binarization. We propose the consistent-pixel-downsample (CP-Down) and consistent-pixel-upsample (CP-Up) to maintain dimension consistent and facilitate the full-precision information transfer. Meanwhile, we design the channel-shuffle-fusion (CS-Fusion) to enhance feature fusion in skip connection. Second, for the activation difference across timestep, we design the timestep-aware redistribution (TaR) and activation function (TaA). The TaR and TaA dynamically adjust the distribution of activations based on different timesteps, improving the flexibility and representation alability of the binarized module. Comprehensive experiments demonstrate that our BI-DiffSR outperforms existing binarization methods. Code is available at https://github.com/zhengchen1999/BI-DiffSR.
Abstract:In recent years, significant progress has been made in multivariate time series forecasting using Linear-based, Transformer-based, and Convolution-based models. However, these approaches face notable limitations: linear forecasters struggle with representation capacities, attention mechanisms suffer from quadratic complexity, and convolutional models have a restricted receptive field. These constraints impede their effectiveness in modeling complex time series, particularly those with numerous variables. Additionally, many models adopt the Channel-Independent (CI) strategy, treating multivariate time series as uncorrelated univariate series while ignoring their correlations. For models considering inter-channel relationships, whether through the self-attention mechanism, linear combination, or convolution, they all incur high computational costs and focus solely on weighted summation relationships, neglecting potential proportional relationships between channels. In this work, we address these issues by leveraging the newly introduced state space model and propose \textbf{C-Mamba}, a novel approach that captures cross-channel dependencies while maintaining linear complexity without losing the global receptive field. Our model consists of two key components: (i) channel mixup, where two channels are mixed to enhance the training sets; (ii) channel attention enhanced patch-wise Mamba encoder that leverages the ability of the state space models to capture cross-time dependencies and models correlations between channels by mining their weight relationships. Our model achieves state-of-the-art performance on seven real-world time series datasets. Moreover, the proposed mixup and attention strategy exhibits strong generalizability across other frameworks.
Abstract:Dataset condensation is a newborn technique that generates a small dataset that can be used in training deep neural networks to lower training costs. The objective of dataset condensation is to ensure that the model trained with the synthetic dataset can perform comparably to the model trained with full datasets. However, existing methods predominantly concentrate on classification tasks, posing challenges in their adaptation to time series forecasting (TS-forecasting). This challenge arises from disparities in the evaluation of synthetic data. In classification, the synthetic data is considered well-distilled if the model trained with the full dataset and the model trained with the synthetic dataset yield identical labels for the same input, regardless of variations in output logits distribution. Conversely, in TS-forecasting, the effectiveness of synthetic data distillation is determined by the distance between predictions of the two models. The synthetic data is deemed well-distilled only when all data points within the predictions are similar. Consequently, TS-forecasting has a more rigorous evaluation methodology compared to classification. To mitigate this gap, we theoretically analyze the optimization objective of dataset condensation for TS-forecasting and propose a new one-line plugin of dataset condensation designated as Dataset Condensation for Time Series Forecasting (CondTSF) based on our analysis. Plugging CondTSF into previous dataset condensation methods facilitates a reduction in the distance between the predictions of the model trained with the full dataset and the model trained with the synthetic dataset, thereby enhancing performance. We conduct extensive experiments on eight commonly used time series datasets. CondTSF consistently improves the performance of all previous dataset condensation methods across all datasets, particularly at low condensing ratios.