Abstract:Recently, Diffusion Transformers (DiTs) have emerged as a dominant architecture in video generation, surpassing U-Net-based models in terms of performance. However, the enhanced capabilities of DiTs come with significant drawbacks, including increased computational and memory costs, which hinder their deployment on resource-constrained devices. Current acceleration techniques, such as quantization and cache mechanism, offer limited speedup and are often applied in isolation, failing to fully address the complexities of DiT architectures. In this paper, we propose QuantCache, a novel training-free inference acceleration framework that jointly optimizes hierarchical latent caching, adaptive importance-guided quantization, and structural redundancy-aware pruning. QuantCache achieves an end-to-end latency speedup of 6.72$\times$ on Open-Sora with minimal loss in generation quality. Extensive experiments across multiple video generation benchmarks demonstrate the effectiveness of our method, setting a new standard for efficient DiT inference. The code and models will be available at https://github.com/JunyiWuCode/QuantCache.
Abstract:Segment anything model (SAM) has shown impressive general-purpose segmentation performance on natural images, but its performance on camouflaged object detection (COD) is unsatisfactory. In this paper, we propose SAM-COD that performs camouflaged object detection for RGB-D inputs. While keeping the SAM architecture intact, dual stream adapters are expanded on the image encoder to learn potential complementary information from RGB images and depth images, and fine-tune the mask decoder and its depth replica to perform dual-stream mask prediction. In practice, the dual stream adapters are embedded into the attention block of the image encoder in a parallel manner to facilitate the refinement and correction of the two types of image embeddings. To mitigate channel discrepancies arising from dual stream embeddings that do not directly interact with each other, we augment the association of dual stream embeddings using bidirectional knowledge distillation including a model distiller and a modal distiller. In addition, to predict the masks for RGB and depth attention maps, we hybridize the two types of image embeddings which are jointly learned with the prompt embeddings to update the initial prompt, and then feed them into the mask decoders to synchronize the consistency of image embeddings and prompt embeddings. Experimental results on four COD benchmarks show that our SAM-COD achieves excellent detection performance gains over SAM and achieves state-of-the-art results with a given fine-tuning paradigm.
Abstract:Low-bit model quantization for image super-resolution (SR) is a longstanding task that is renowned for its surprising compression and acceleration ability. However, accuracy degradation is inevitable when compressing the full-precision (FP) model to ultra-low bit widths (2~4 bits). Experimentally, we observe that the degradation of quantization is mainly attributed to the quantization of activation instead of model weights. In numerical analysis, the condition number of weights could measure how much the output value can change for a small change in the input argument, inherently reflecting the quantization error. Therefore, we propose CondiQuant, a condition number based low-bit post-training quantization for image super-resolution. Specifically, we formulate the quantization error as the condition number of weight metrics. By decoupling the representation ability and the quantization sensitivity, we design an efficient proximal gradient descent algorithm to iteratively minimize the condition number and maintain the output still. With comprehensive experiments, we demonstrate that CondiQuant outperforms existing state-of-the-art post-training quantization methods in accuracy without computation overhead and gains the theoretically optimal compression ratio in model parameters. Our code and model are released at https://github.com/Kai-Liu001/CondiQuant.
Abstract:Large language models (LLMs) have achieved remarkable success in natural language processing (NLP) tasks, yet their substantial memory requirements present significant challenges for deployment on resource-constrained devices. Singular Value Decomposition (SVD) has emerged as a promising compression technique for LLMs, offering considerable reductions in memory overhead. However, existing SVD-based methods often struggle to effectively mitigate the errors introduced by SVD truncation, leading to a noticeable performance gap when compared to the original models. Furthermore, applying a uniform compression ratio across all transformer layers fails to account for the varying importance of different layers. To address these challenges, we propose AdaSVD, an adaptive SVD-based LLM compression approach. Specifically, AdaSVD introduces adaComp, which adaptively compensates for SVD truncation errors by alternately updating the singular matrices U and V^T. Additionally, AdaSVD introduces adaCR, which adaptively assigns layer-specific compression ratios based on the relative importance of each layer. Extensive experiments across multiple LLM families and evaluation metrics demonstrate that AdaSVD consistently outperforms state-of-the-art (SOTA) SVD-based methods, achieving superior performance with significantly reduced memory requirements. The code and models will be available at https://github.com/ZHITENGLI/AdaSVD.
Abstract:Existing concealed object segmentation (COS) methods frequently utilize reversible strategies to address uncertain regions. However, these approaches are typically restricted to the mask domain, leaving the potential of the RGB domain underexplored. To address this, we propose the Reversible Unfolding Network (RUN), which applies reversible strategies across both mask and RGB domains through a theoretically grounded framework, enabling accurate segmentation. RUN first formulates a novel COS model by incorporating an extra residual sparsity constraint to minimize segmentation uncertainties. The iterative optimization steps of the proposed model are then unfolded into a multistage network, with each step corresponding to a stage. Each stage of RUN consists of two reversible modules: the Segmentation-Oriented Foreground Separation (SOFS) module and the Reconstruction-Oriented Background Extraction (ROBE) module. SOFS applies the reversible strategy at the mask level and introduces Reversible State Space to capture non-local information. ROBE extends this to the RGB domain, employing a reconstruction network to address conflicting foreground and background regions identified as distortion-prone areas, which arise from their separate estimation by independent modules. As the stages progress, RUN gradually facilitates reversible modeling of foreground and background in both the mask and RGB domains, directing the network's attention to uncertain regions and mitigating false-positive and false-negative results. Extensive experiments demonstrate the superior performance of RUN and highlight the potential of unfolding-based frameworks for COS and other high-level vision tasks. We will release the code and models.
Abstract:Recent advancements in computational chemistry have leveraged the power of trans-former-based language models, such as MoLFormer, pre-trained using a vast amount of simplified molecular-input line-entry system (SMILES) sequences, to understand and predict molecular properties and activities, a critical step in fields like drug discovery and materials science. To further improve performance, researchers have introduced graph neural networks with graph-based molecular representations, such as GEM, incorporating the topology, geometry, 2D or even 3D structures of molecules into pre-training. While most of molecular graphs in existing studies were automatically converted from SMILES sequences, it is to assume that transformer-based language models might be able to implicitly learn structure-aware representations from SMILES sequences. In this paper, we propose \ours{} -- a SMILES-based \underline{\em M}olecular \underline{\em L}anguage \underline{\em M}odel, which randomly masking SMILES subsequences corresponding to specific molecular \underline{\em F}unctional \underline{\em G}roups to incorporate structure information of atoms during the pre-training phase. This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities. Extensive experimental evaluations across 11 benchmark classification and regression tasks in the chemical domain demonstrate the robustness and superiority of \ours{}. Our findings reveal that \ours{} outperforms existing pre-training models, either based on SMILES or graphs, in 9 out of the 11 downstream tasks, ranking as a close second in the remaining ones.
Abstract:Large Language Models (LLMs) have greatly pushed forward advancements in natural language processing, yet their high memory and computational demands hinder practical deployment. Binarization, as an effective compression technique, can shrink model weights to just 1 bit, significantly reducing the high demands on computation and memory. However, current binarization methods struggle to narrow the distribution gap between binarized and full-precision weights, while also overlooking the column deviation in LLM weight distribution. To tackle these issues, we propose ARB-LLM, a novel 1-bit post-training quantization (PTQ) technique tailored for LLMs. To narrow the distribution shift between binarized and full-precision weights, we first design an alternating refined binarization (ARB) algorithm to progressively update the binarization parameters, which significantly reduces the quantization error. Moreover, considering the pivot role of calibration data and the column deviation in LLM weights, we further extend ARB to ARB-X and ARB-RC. In addition, we refine the weight partition strategy with column-group bitmap (CGB), which further enhance performance. Equipping ARB-X and ARB-RC with CGB, we obtain ARB-LLM$_\text{X}$ and ARB-LLM$_\text{RC}$ respectively, which significantly outperform state-of-the-art (SOTA) binarization methods for LLMs. As a binary PTQ method, our ARB-LLM$_\text{RC}$ is the first to surpass FP16 models of the same size. The code and models will be available at https://github.com/ZHITENGLI/ARB-LLM.
Abstract:Image quality assessment (IQA) serves as the golden standard for all models' performance in nearly all computer vision fields. However, it still suffers from poor out-of-distribution generalization ability and expensive training costs. To address these problems, we propose Dog-IQA, a standard-guided zero-shot mix-grained IQA method, which is training-free and utilizes the exceptional prior knowledge of multimodal large language models (MLLMs). To obtain accurate IQA scores, namely scores consistent with humans, we design an MLLM-based inference pipeline that imitates human experts. In detail, Dog-IQA applies two techniques. First, Dog-IQA objectively scores with specific standards that utilize MLLM's behavior pattern and minimize the influence of subjective factors. Second, Dog-IQA comprehensively takes local semantic objects and the whole image as input and aggregates their scores, leveraging local and global information. Our proposed Dog-IQA achieves state-of-the-art (SOTA) performance compared with training-free methods, and competitive performance compared with training-based methods in cross-dataset scenarios. Our code and models will be available at https://github.com/Kai-Liu001/Dog-IQA.
Abstract:Existing 3D mask learning methods encounter performance bottlenecks under limited data, and our objective is to overcome this limitation. In this paper, we introduce a triple point masking scheme, named TPM, which serves as a scalable framework for pre-training of masked autoencoders to achieve multi-mask learning for 3D point clouds. Specifically, we augment the baselines with two additional mask choices (i.e., medium mask and low mask) as our core insight is that the recovery process of an object can manifest in diverse ways. Previous high-masking schemes focus on capturing the global representation but lack the fine-grained recovery capability, so that the generated pre-trained weights tend to play a limited role in the fine-tuning process. With the support of the proposed TPM, available methods can exhibit more flexible and accurate completion capabilities, enabling the potential autoencoder in the pre-training stage to consider multiple representations of a single 3D object. In addition, an SVM-guided weight selection module is proposed to fill the encoder parameters for downstream networks with the optimal weight during the fine-tuning stage, maximizing linear accuracy and facilitating the acquisition of intricate representations for new objects. Extensive experiments show that the four baselines equipped with the proposed TPM achieve comprehensive performance improvements on various downstream tasks.
Abstract:Both Transformer and Graph Neural Networks (GNNs) have been employed in the domain of learning to rank (LTR). However, these approaches adhere to two distinct yet complementary problem formulations: ranking score regression based on query-webpage pairs, and link prediction within query-webpage bipartite graphs, respectively. While it is possible to pre-train GNNs or Transformers on source datasets and subsequently fine-tune them on sparsely annotated LTR datasets, the distributional shifts between the pair-based and bipartite graph domains present significant challenges in integrating these heterogeneous models into a unified LTR framework at web scale. To address this, we introduce the novel MPGraf model, which leverages a modular and capsule-based pre-training strategy, aiming to cohesively integrate the regression capabilities of Transformers with the link prediction strengths of GNNs. We conduct extensive offline and online experiments to rigorously evaluate the performance of MPGraf.