Abstract:Money laundering is a financial crime that obscures the origin of illicit funds, necessitating the development and enforcement of anti-money laundering (AML) policies by governments and organizations. The proliferation of mobile payment platforms and smart IoT devices has significantly complicated AML investigations. As payment networks become more interconnected, there is an increasing need for efficient real-time detection to process large volumes of transaction data on heterogeneous payment systems by different operators such as digital currencies, cryptocurrencies and account-based payments. Most of these mobile payment networks are supported by connected devices, many of which are considered loT devices in the FinTech space that constantly generate data. Furthermore, the growing complexity and unpredictability of transaction patterns across these networks contribute to a higher incidence of false positives. While machine learning solutions have the potential to enhance detection efficiency, their application in AML faces unique challenges, such as addressing privacy concerns tied to sensitive financial data and managing the real-world constraint of limited data availability due to data regulations. Existing surveys in the AML literature broadly review machine learning approaches for money laundering detection, but they often lack an in-depth exploration of advanced deep learning techniques - an emerging field with significant potential. To address this gap, this paper conducts a comprehensive review of deep learning solutions and the challenges associated with their use in AML. Additionally, we propose a novel framework that applies the least-privilege principle by integrating machine learning techniques, codifying AML red flags, and employing account profiling to provide context for predictions and enable effective fraud detection under limited data availability....
Abstract:Artificial Intelligence-Generated Content (AIGC) refers to the paradigm of automated content generation utilizing AI models. Mobile AIGC services in the Internet of Vehicles (IoV) network have numerous advantages over traditional cloud-based AIGC services, including enhanced network efficiency, better reconfigurability, and stronger data security and privacy. Nonetheless, AIGC service provisioning frequently demands significant resources. Consequently, resource-constrained roadside units (RSUs) face challenges in maintaining a heterogeneous pool of AIGC services and addressing all user service requests without degrading overall performance. Therefore, in this paper, we propose a decentralized incentive mechanism for mobile AIGC service allocation, employing multi-agent deep reinforcement learning to find the balance between the supply of AIGC services on RSUs and user demand for services within the IoV context, optimizing user experience and minimizing transmission latency. Experimental results demonstrate that our approach achieves superior performance compared to other baseline models.