Abstract:Revisiting PCA for Time Series Reduction in Temporal Dimension; Jiaxin Gao, Wenbo Hu, Yuntian Chen; Deep learning has significantly advanced time series analysis (TSA), enabling the extraction of complex patterns for tasks like classification, forecasting, and regression. Although dimensionality reduction has traditionally focused on the variable space-achieving notable success in minimizing data redundancy and computational complexity-less attention has been paid to reducing the temporal dimension. In this study, we revisit Principal Component Analysis (PCA), a classical dimensionality reduction technique, to explore its utility in temporal dimension reduction for time series data. It is generally thought that applying PCA to the temporal dimension would disrupt temporal dependencies, leading to limited exploration in this area. However, our theoretical analysis and extensive experiments demonstrate that applying PCA to sliding series windows not only maintains model performance, but also enhances computational efficiency. In auto-regressive forecasting, the temporal structure is partially preserved through windowing, and PCA is applied within these windows to denoise the time series while retaining their statistical information. By preprocessing time-series data with PCA, we reduce the temporal dimensionality before feeding it into TSA models such as Linear, Transformer, CNN, and RNN architectures. This approach accelerates training and inference and reduces resource consumption. Notably, PCA improves Informer training and inference speed by up to 40% and decreases GPU memory usage of TimesNet by 30%, without sacrificing model accuracy. Comparative analysis against other reduction methods further highlights the effectiveness of PCA in improving the efficiency of TSA models.
Abstract:Time series forecasting (TSF) is essential in various domains, and recent advancements in diffusion-based TSF models have shown considerable promise. However, these models typically adopt traditional diffusion patterns, treating TSF as a noise-based conditional generation task. This approach neglects the inherent continuous sequential nature of time series, leading to a fundamental misalignment between diffusion mechanisms and the TSF objective, thereby severely impairing performance. To bridge this misalignment, and inspired by the classic Auto-Regressive Moving Average (ARMA) theory, which views time series as continuous sequential progressions evolving from previous data points, we propose a novel Auto-Regressive Moving Diffusion (ARMD) model to first achieve the continuous sequential diffusion-based TSF. Unlike previous methods that start from white Gaussian noise, our model employs chain-based diffusion with priors, accurately modeling the evolution of time series and leveraging intermediate state information to improve forecasting accuracy and stability. Specifically, our approach reinterprets the diffusion process by considering future series as the initial state and historical series as the final state, with intermediate series generated using a sliding-based technique during the forward process. This design aligns the diffusion model's sampling procedure with the forecasting objective, resulting in an unconditional, continuous sequential diffusion TSF model. Extensive experiments conducted on seven widely used datasets demonstrate that our model achieves state-of-the-art performance, significantly outperforming existing diffusion-based TSF models. Our code is available on GitHub: https://github.com/daxin007/ARMD.
Abstract:Large language models (LLMs) have seen significant advancements, achieving superior performance in various Natural Language Processing (NLP) tasks, from understanding to reasoning. However, they remain vulnerable to backdoor attacks, where models behave normally for standard queries but generate harmful responses or unintended output when specific triggers are activated. Existing backdoor defenses often suffer from drawbacks that they either focus on detection without removal, rely on rigid assumptions about trigger properties, or prove to be ineffective against advanced attacks like multi-trigger backdoors. In this paper, we present a novel method to eliminate backdoor behaviors from LLMs through the construction of information conflicts using both internal and external mechanisms. Internally, we leverage a lightweight dataset to train a conflict model, which is then merged with the backdoored model to neutralize malicious behaviors by embedding contradictory information within the model's parametric memory. Externally, we incorporate convincing contradictory evidence into the prompt to challenge the model's internal backdoor knowledge. Experimental results on classification and conversational tasks across 4 widely used LLMs demonstrate that our method outperforms 8 state-of-the-art backdoor defense baselines. We can reduce the attack success rate of advanced backdoor attacks by up to 98% while maintaining over 90% clean data accuracy. Furthermore, our method has proven to be robust against adaptive backdoor attacks. The code will be open-sourced upon publication.
Abstract:Photovoltaic (PV) power forecasting plays a crucial role in optimizing the operation and planning of PV systems, thereby enabling efficient energy management and grid integration. However, un certainties caused by fluctuating weather conditions and complex interactions between different variables pose significant challenges to accurate PV power forecasting. In this study, we propose PV-Client (Cross-variable Linear Integrated ENhanced Transformer for Photovoltaic power forecasting) to address these challenges and enhance PV power forecasting accuracy. PV-Client employs an ENhanced Transformer module to capture complex interactions of various features in PV systems, and utilizes a linear module to learn trend information in PV power. Diverging from conventional time series-based Transformer models that use cross-time Attention to learn dependencies between different time steps, the Enhanced Transformer module integrates cross-variable Attention to capture dependencies between PV power and weather factors. Furthermore, PV-Client streamlines the embedding and position encoding layers by replacing the Decoder module with a projection layer. Experimental results on three real-world PV power datasets affirm PV-Client's state-of-the-art (SOTA) performance in PV power forecasting. Specifically, PV-Client surpasses the second-best model GRU by 5.3% in MSE metrics and 0.9% in accuracy metrics at the Jingang Station. Similarly, PV-Client outperforms the second-best model SVR by 10.1% in MSE metrics and 0.2% in accuracy metrics at the Xinqingnian Station, and PV-Client exhibits superior performance compared to the second-best model SVR with enhancements of 3.4% in MSE metrics and 0.9% in accuracy metrics at the Hongxing Station.
Abstract:Transfer attacks generate significant interest for real-world black-box applications by crafting transferable adversarial examples through surrogate models. Whereas, existing works essentially directly optimize the single-level objective w.r.t. the surrogate model, which always leads to poor interpretability of attack mechanism and limited generalization performance over unknown victim models. In this work, we propose the \textbf{B}il\textbf{E}vel \textbf{T}ransfer \textbf{A}ttac\textbf{K} (BETAK) framework by establishing an initialization derived bilevel optimization paradigm, which explicitly reformulates the nested constraint relationship between the Upper-Level (UL) pseudo-victim attacker and the Lower-Level (LL) surrogate attacker. Algorithmically, we introduce the Hyper Gradient Response (HGR) estimation as an effective feedback for the transferability over pseudo-victim attackers, and propose the Dynamic Sequence Truncation (DST) technique to dynamically adjust the back-propagation path for HGR and reduce computational overhead simultaneously. Meanwhile, we conduct detailed algorithmic analysis and provide convergence guarantee to support non-convexity of the LL surrogate attacker. Extensive evaluations demonstrate substantial improvement of BETAK (e.g., $\mathbf{53.41}$\% increase of attack success rates against IncRes-v$2_{ens}$) against different victims and defense methods in targeted and untargeted attack scenarios. The source code is available at https://github.com/callous-youth/BETAK.
Abstract:Machine learning algorithms emerge as a promising approach in energy fields, but its practical is hindered by data barriers, stemming from high collection costs and privacy concerns. This study introduces a novel federated learning (FL) framework based on XGBoost models, enabling safe collaborative modeling with accessible yet concealed data from multiple parties. Hyperparameter tuning of the models is achieved through Bayesian Optimization. To ascertain the merits of the proposed FL-XGBoost method, a comparative analysis is conducted between separate and centralized models to address a classical binary classification problem in geoenergy sector. The results reveal that the proposed FL framework strikes an optimal balance between privacy and accuracy. FL models demonstrate superior accuracy and generalization capabilities compared to separate models, particularly for participants with limited data or low correlation features and offers significant privacy benefits compared to centralized model. The aggregated optimization approach within the FL agreement proves effective in tuning hyperparameters. This study opens new avenues for assessing unconventional reservoirs through collaborative and privacy-preserving FL techniques.
Abstract:The visibility of real-world images is often limited by both low-light and low-resolution, however, these issues are only addressed in the literature through Low-Light Enhancement (LLE) and Super- Resolution (SR) methods. Admittedly, a simple cascade of these approaches cannot work harmoniously to cope well with the highly ill-posed problem for simultaneously enhancing visibility and resolution. In this paper, we propose a normalizing flow network, dubbed LoLiSRFLow, specifically designed to consider the degradation mechanism inherent in joint LLE and SR. To break the bonds of the one-to-many mapping for low-light low-resolution images to normal-light high-resolution images, LoLiSRFLow directly learns the conditional probability distribution over a variety of feasible solutions for high-resolution well-exposed images. Specifically, a multi-resolution parallel transformer acts as a conditional encoder that extracts the Retinex-induced resolution-and-illumination invariant map as the previous one. And the invertible network maps the distribution of usually exposed high-resolution images to a latent distribution. The backward inference is equivalent to introducing an additional constrained loss for the normal training route, thus enabling the manifold of the natural exposure of the high-resolution image to be immaculately depicted. We also propose a synthetic dataset modeling the realistic low-light low-resolution degradation, named DFSR-LLE, containing 7100 low-resolution dark-light/high-resolution normal sharp pairs. Quantitative and qualitative experimental results demonstrate the effectiveness of our method on both the proposed synthetic and real datasets.
Abstract:Time series forecasting (TSF) holds significant importance in modern society, spanning numerous domains. Previous representation learning-based TSF algorithms typically embrace a contrastive learning paradigm featuring segregated trend-periodicity representations. Yet, these methodologies disregard the inherent high-impact noise embedded within time series data, resulting in representation inaccuracies and seriously demoting the forecasting performance. To address this issue, we propose CLeaRForecast, a novel contrastive learning framework to learn high-purity time series representations with proposed sample, feature, and architecture purifying methods. More specifically, to avoid more noise adding caused by the transformations of original samples (series), transformations are respectively applied for trendy and periodic parts to provide better positive samples with obviously less noise. Moreover, we introduce a channel independent training manner to mitigate noise originating from unrelated variables in the multivariate series. By employing a streamlined deep-learning backbone and a comprehensive global contrastive loss function, we prevent noise introduction due to redundant or uneven learning of periodicity and trend. Experimental results show the superior performance of CLeaRForecast in various downstream TSF tasks.
Abstract:Automatic Modulation Classification (AMC) plays a vital role in time series analysis, such as signal classification and identification within wireless communications. Deep learning-based AMC models have demonstrated significant potential in this domain. However, current AMC models inadequately consider the disparities in handling signals under conditions of low and high Signal-to-Noise Ratio (SNR), resulting in an unevenness in their performance. In this study, we propose MoE-AMC, a novel Mixture-of-Experts (MoE) based model specifically crafted to address AMC in a well-balanced manner across varying SNR conditions. Utilizing the MoE framework, MoE-AMC seamlessly combines the strengths of LSRM (a Transformer-based model) for handling low SNR signals and HSRM (a ResNet-based model) for high SNR signals. This integration empowers MoE-AMC to achieve leading performance in modulation classification, showcasing its efficacy in capturing distinctive signal features under diverse SNR scenarios. We conducted experiments using the RML2018.01a dataset, where MoE-AMC achieved an average classification accuracy of 71.76% across different SNR levels, surpassing the performance of previous SOTA models by nearly 10%. This study represents a pioneering application of MoE techniques in the realm of AMC, offering a promising avenue for elevating signal classification accuracy within wireless communication systems.
Abstract:Reinforcement learning (RL) has proven to be highly effective in tackling complex decision-making and control tasks. However, prevalent model-free RL methods often face severe performance degradation due to the well-known overestimation issue. In response to this problem, we recently introduced an off-policy RL algorithm, called distributional soft actor-critic (DSAC or DSAC-v1), which can effectively improve the value estimation accuracy by learning a continuous Gaussian value distribution. Nonetheless, standard DSAC has its own shortcomings, including occasionally unstable learning processes and needs for task-specific reward scaling, which may hinder its overall performance and adaptability in some special tasks. This paper further introduces three important refinements to standard DSAC in order to address these shortcomings. These refinements consist of critic gradient adjusting, twin value distribution learning, and variance-based target return clipping. The modified RL algorithm is named as DSAC with three refinements (DSAC-T or DSAC-v2), and its performances are systematically evaluated on a diverse set of benchmark tasks. Without any task-specific hyperparameter tuning, DSAC-T surpasses a lot of mainstream model-free RL algorithms, including SAC, TD3, DDPG, TRPO, and PPO, in all tested environments. Additionally, DSAC-T, unlike its standard version, ensures a highly stable learning process and delivers similar performance across varying reward scales.