Abstract:In recent years, accurately and quickly deploying medical large language models (LLMs) has become a significant trend. Among these, retrieval-augmented generation (RAG) has garnered significant attention due to its features of rapid deployment and privacy protection. However, existing medical RAG frameworks still have shortcomings. Most existing medical RAG frameworks are designed for single-round question answering tasks and are not suitable for multi-round diagnostic dialogue. On the other hand, existing medical multi-round RAG frameworks do not consider the interconnections between potential diseases to inquire precisely like a doctor. To address these issues, we propose a Multi-Round Diagnostic RAG (MRD-RAG) framework that mimics the doctor's diagnostic process. This RAG framework can analyze diagnosis information of potential diseases and accurately conduct multi-round diagnosis like a doctor. To evaluate the effectiveness of our proposed frameworks, we conduct experiments on two modern medical datasets and two traditional Chinese medicine datasets, with evaluations by GPT and human doctors on different methods. The results indicate that our RAG framework can significantly enhance the diagnostic performance of LLMs, highlighting the potential of our approach in medical diagnosis. The code and data can be found in our project website https://github.com/YixiangCh/MRD-RAG/tree/master.
Abstract:Chain-of-Thought (CoT) prompting has been widely recognized for its ability to enhance reasoning capabilities in large language models (LLMs) through the generation of explicit explanatory rationales. However, our study reveals a surprising contradiction to this prevailing perspective. Through extensive experiments involving 16 state-of-the-art LLMs and nine diverse pattern-based in-context learning (ICL) datasets, we demonstrate that CoT and its reasoning variants consistently underperform direct answering across varying model scales and benchmark complexities. To systematically investigate this unexpected phenomenon, we designed extensive experiments to validate several hypothetical explanations. Our analysis uncovers a fundamental explicit-implicit duality driving CoT's performance in pattern-based ICL: while explicit reasoning falters due to LLMs' struggles to infer underlying patterns from demonstrations, implicit reasoning-disrupted by the increased contextual distance of CoT rationales-often compensates, delivering correct answers despite flawed rationales. This duality explains CoT's relative underperformance, as noise from weak explicit inference undermines the process, even as implicit mechanisms partially salvage outcomes. Notably, even long-CoT reasoning models, which excel in abstract and symbolic reasoning, fail to fully overcome these limitations despite higher computational costs. Our findings challenge existing assumptions regarding the universal efficacy of CoT, yielding novel insights into its limitations and guiding future research toward more nuanced and effective reasoning methodologies for LLMs.
Abstract:The Structured Dialogue System, referred to as SuDoSys, is an innovative Large Language Model (LLM)-based chatbot designed to provide psychological counseling. SuDoSys leverages the World Health Organization (WHO)'s Problem Management Plus (PM+) guidelines to deliver stage-aware multi-turn dialogues. Existing methods for employing an LLM in multi-turn psychological counseling typically involve direct fine-tuning using generated dialogues, often neglecting the dynamic stage shifts of counseling sessions. Unlike previous approaches, SuDoSys considers the different stages of counseling and stores essential information throughout the counseling process, ensuring coherent and directed conversations. The system employs an LLM, a stage-aware instruction generator, a response unpacker, a topic database, and a stage controller to maintain dialogue flow. In addition, we propose a novel technique that simulates counseling clients to interact with the evaluated system and evaluate its performance automatically. When assessed using both objective and subjective evaluations, SuDoSys demonstrates its effectiveness in generating logically coherent responses. The system's code and program scripts for evaluation are open-sourced.
Abstract:Open-source software (OSS) vulnerabilities are increasingly prevalent, emphasizing the importance of security patches. However, in widely used security platforms like NVD, a substantial number of CVE records still lack trace links to patches. Although rank-based approaches have been proposed for security patch tracing, they heavily rely on handcrafted features in a single-step framework, which limits their effectiveness. In this paper, we propose PatchFinder, a two-phase framework with end-to-end correlation learning for better-tracing security patches. In the **initial retrieval** phase, we employ a hybrid patch retriever to account for both lexical and semantic matching based on the code changes and the description of a CVE, to narrow down the search space by extracting those commits as candidates that are similar to the CVE descriptions. Afterwards, in the **re-ranking** phase, we design an end-to-end architecture under the supervised fine-tuning paradigm for learning the semantic correlations between CVE descriptions and commits. In this way, we can automatically rank the candidates based on their correlation scores while maintaining low computation overhead. We evaluated our system against 4,789 CVEs from 532 OSS projects. The results are highly promising: PatchFinder achieves a Recall@10 of 80.63% and a Mean Reciprocal Rank (MRR) of 0.7951. Moreover, the Manual Effort@10 required is curtailed to 2.77, marking a 1.94 times improvement over current leading methods. When applying PatchFinder in practice, we initially identified 533 patch commits and submitted them to the official, 482 of which have been confirmed by CVE Numbering Authorities.
Abstract:It is still challenging to cluster multi-view data since existing methods can only assign an object to a specific (singleton) cluster when combining different view information. As a result, it fails to characterize imprecision of objects in overlapping regions of different clusters, thus leading to a high risk of errors. In this paper, we thereby want to answer the question: how to characterize imprecision in multi-view clustering? Correspondingly, we propose a multi-view low-rank evidential c-means based on entropy constraint (MvLRECM). The proposed MvLRECM can be considered as a multi-view version of evidential c-means based on the theory of belief functions. In MvLRECM, each object is allowed to belong to different clusters with various degrees of support (masses of belief) to characterize uncertainty when decision-making. Moreover, if an object is in the overlapping region of several singleton clusters, it can be assigned to a meta-cluster, defined as the union of these singleton clusters, to characterize the local imprecision in the result. In addition, entropy-weighting and low-rank constraints are employed to reduce imprecision and improve accuracy. Compared to state-of-the-art methods, the effectiveness of MvLRECM is demonstrated based on several toy and UCI real datasets.
Abstract:Federated learning, which solves the problem of data island by connecting multiple computational devices into a decentralized system, has become a promising paradigm for privacy-preserving machine learning. This paper studies vertical federated learning (VFL), which tackles the scenarios where collaborating organizations share the same set of users but disjoint features. Contemporary VFL methods are mainly used in static scenarios where the active party and the passive party have all the data from the beginning and will not change. However, the data in real life often changes dynamically. To alleviate this problem, we propose a new vertical federation learning method, DVFL, which adapts to dynamic data distribution changes through knowledge distillation. In DVFL, most of the computations are held locally to improve data security and model efficiency. Our extensive experimental results show that DVFL can not only obtain results close to existing VFL methods in static scenes, but also adapt to changes in data distribution in dynamic scenarios.
Abstract:Various informative factors mixed in speech signals, leading to great difficulty when decoding any of the factors. An intuitive idea is to factorize each speech frame into individual informative factors, though it turns out to be highly difficult. Recently, we found that speaker traits, which were assumed to be long-term distributional properties, are actually short-time patterns, and can be learned by a carefully designed deep neural network (DNN). This discovery motivated a cascade deep factorization (CDF) framework that will be presented in this paper. The proposed framework infers speech factors in a sequential way, where factors previously inferred are used as conditional variables when inferring other factors. We will show that this approach can effectively factorize speech signals, and using these factors, the original speech spectrum can be recovered with a high accuracy. This factorization and reconstruction approach provides potential values for many speech processing tasks, e.g., speaker recognition and emotion recognition, as will be demonstrated in the paper.
Abstract:Deep neural models, particularly the LSTM-RNN model, have shown great potential for language identification (LID). However, the use of phonetic information has been largely overlooked by most existing neural LID methods, although this information has been used very successfully in conventional phonetic LID systems. We present a phonetic temporal neural model for LID, which is an LSTM-RNN LID system that accepts phonetic features produced by a phone-discriminative DNN as the input, rather than raw acoustic features. This new model is similar to traditional phonetic LID methods, but the phonetic knowledge here is much richer: it is at the frame level and involves compacted information of all phones. Our experiments conducted on the Babel database and the AP16-OLR database demonstrate that the temporal phonetic neural approach is very effective, and significantly outperforms existing acoustic neural models. It also outperforms the conventional i-vector approach on short utterances and in noisy conditions.
Abstract:We present the data profile and the evaluation plan of the second oriental language recognition (OLR) challenge AP17-OLR. Compared to the event last year (AP16-OLR), the new challenge involves more languages and focuses more on short utterances. The data is offered by SpeechOcean and the NSFC M2ASR project. Two types of baselines are constructed to assist the participants, one is based on the i-vector model and the other is based on various neural networks. We report the baseline results evaluated with various metrics defined by the AP17-OLR evaluation plan and demonstrate that the combined database is a reasonable data resource for multilingual research. All the data is free for participants, and the Kaldi recipes for the baselines have been published online.
Abstract:Speech signals are complex intermingling of various informative factors, and this information blending makes decoding any of the individual factors extremely difficult. A natural idea is to factorize each speech frame into independent factors, though it turns out to be even more difficult than decoding each individual factor. A major encumbrance is that the speaker trait, a major factor in speech signals, has been suspected to be a long-term distributional pattern and so not identifiable at the frame level. In this paper, we demonstrated that the speaker factor is also a short-time spectral pattern and can be largely identified with just a few frames using a simple deep neural network (DNN). This discovery motivated a cascade deep factorization (CDF) framework that infers speech factors in a sequential way, and factors previously inferred are used as conditional variables when inferring other factors. Our experiment on an automatic emotion recognition (AER) task demonstrated that this approach can effectively factorize speech signals, and using these factors, the original speech spectrum can be recovered with high accuracy. This factorization and reconstruction approach provides a novel tool for many speech processing tasks.