Abstract:Stuttering is a neurodevelopmental speech disorder characterized by common speech symptoms such as pauses, exclamations, repetition, and prolongation. Speech-language pathologists typically assess the type and severity of stuttering by observing these symptoms. Many effective end-to-end methods exist for stuttering detection, but a commonly overlooked challenge is the uncertain relationship between tasks involved in this process. Using a suitable multi-task strategy could improve stuttering detection performance. This paper presents a novel stuttering event detection model designed to help speech-language pathologists assess both the type and severity of stuttering. First, the Conformer model extracts acoustic features from stuttered speech, followed by a Long Short-Term Memory (LSTM) network to capture contextual information. Finally, we explore multi-task learning for stuttering and propose an effective multi-task strategy. Experimental results show that our model outperforms current state-of-the-art methods for stuttering detection. In the SLT 2024 Stuttering Speech Challenge based on the AS-70 dataset [1], our model improved the mean F1 score by 24.8% compared to the baseline method and achieved first place. On this basis, we conducted relevant extensive experiments on LSTM and multi-task learning strategies respectively. The results show that our proposed method improved the mean F1 score by 39.8% compared to the baseline method.
Abstract:This paper studies offline dynamic pricing without data coverage assumption, thereby allowing for any price including the optimal one not being observed in the offline data. Previous approaches that rely on the various coverage assumptions such as that the optimal prices are observable, would lead to suboptimal decisions and consequently, reduced profits. We address this challenge by framing the problem to a partial identification framework. Specifically, we establish a partial identification bound for the demand parameter whose associated price is unobserved by leveraging the inherent monotonicity property in the pricing problem. We further incorporate pessimistic and opportunistic strategies within the proposed partial identification framework to derive the estimated policy. Theoretically, we establish rate-optimal finite-sample regret guarantees for both strategies. Empirically, we demonstrate the superior performance of the newly proposed methods via a synthetic environment. This research provides practitioners with valuable insights into offline pricing strategies in the challenging no-coverage setting, ultimately fostering sustainable growth and profitability of the company.
Abstract:Hyperspectral sensing is a valuable tool for detecting anomalies and distinguishing between materials in a scene. Hyperspectral anomaly detection (HS-AD) helps characterize the captured scenes and separates them into anomaly and background classes. It is vital in agriculture, environment, and military applications such as RSTA (reconnaissance, surveillance, and target acquisition) missions. We previously designed an equal voting ensemble of hyperspectral unmixing and three unsupervised HS-AD algorithms. We later utilized a supervised classifier to determine the weights of a voting ensemble, creating a hybrid of heterogeneous unsupervised HS-AD algorithms with a supervised classifier in a model stacking, which improved detection accuracy. However, supervised classification methods usually fail to detect novel or unknown patterns that substantially deviate from those seen previously. In this work, we evaluate our technique and other supervised and unsupervised methods using general hyperspectral data to provide new insights.
Abstract:Conditional Generative Adversarial Nets (CGAN) is often used to improve conditional image generation performance. However, there is little research on Representation learning with CGAN for causal inference. This paper proposes a new method for finding representation learning functions by adopting the adversarial idea. We apply the pattern of CGAN and theoretically emonstrate the feasibility of finding a suitable representation function in the context of two distributions being balanced. The theoretical result shows that when two distributions are balanced, the ideal representation function can be found and thus can be used to further research.
Abstract:Disordered speech recognition profound implications for improving the quality of life for individuals afflicted with, for example, dysarthria. Dysarthric speech recognition encounters challenges including limited data, substantial dissimilarities between dysarthric and non-dysarthric speakers, and significant speaker variations stemming from the disorder. This paper introduces Perceiver-Prompt, a method for speaker adaptation that utilizes P-Tuning on the Whisper large-scale model. We first fine-tune Whisper using LoRA and then integrate a trainable Perceiver to generate fixed-length speaker prompts from variable-length inputs, to improve model recognition of Chinese dysarthric speech. Experimental results from our Chinese dysarthric speech dataset demonstrate consistent improvements in recognition performance with Perceiver-Prompt. Relative reduction up to 13.04% in CER is obtained over the fine-tuned Whisper.
Abstract:Automatic assessment of dysarthria remains a highly challenging task due to high variability in acoustic signals and the limited data. Currently, research on the automatic assessment of dysarthria primarily focuses on two approaches: one that utilizes expert features combined with machine learning, and the other that employs data-driven deep learning methods to extract representations. Research has demonstrated that expert features are effective in representing pathological characteristics, while deep learning methods excel at uncovering latent features. Therefore, integrating the advantages of expert features and deep learning to construct a neural network architecture based on expert knowledge may be beneficial for interpretability and assessment performance. In this context, the present paper proposes a vowel graph attention network based on audio-visual information, which effectively integrates the strengths of expert knowledges and deep learning. Firstly, various features were combined as inputs, including knowledge based acoustical features and deep learning based pre-trained representations. Secondly, the graph network structure based on vowel space theory was designed, allowing for a deep exploration of spatial correlations among vowels. Finally, visual information was incorporated into the model to further enhance its robustness and generalizability. The method exhibited superior performance in regression experiments targeting Frenchay scores compared to existing approaches.
Abstract:The data-driven newsvendor problem with features has recently emerged as a significant area of research, driven by the proliferation of data across various sectors such as retail, supply chains, e-commerce, and healthcare. Given the sensitive nature of customer or organizational data often used in feature-based analysis, it is crucial to ensure individual privacy to uphold trust and confidence. Despite its importance, privacy preservation in the context of inventory planning remains unexplored. A key challenge is the nonsmoothness of the newsvendor loss function, which sets it apart from existing work on privacy-preserving algorithms in other settings. This paper introduces a novel approach to estimate a privacy-preserving optimal inventory policy within the f-differential privacy framework, an extension of the classical $(\epsilon, \delta)$-differential privacy with several appealing properties. We develop a clipped noisy gradient descent algorithm based on convolution smoothing for optimal inventory estimation to simultaneously address three main challenges: (1) unknown demand distribution and nonsmooth loss function; (2) provable privacy guarantees for individual-level data; and (3) desirable statistical precision. We derive finite-sample high-probability bounds for optimal policy parameter estimation and regret analysis. By leveraging the structure of the newsvendor problem, we attain a faster excess population risk bound compared to that obtained from an indiscriminate application of existing results for general nonsmooth convex loss. Our bound aligns with that for strongly convex and smooth loss function. Our numerical experiments demonstrate that the proposed new method can achieve desirable privacy protection with a marginal increase in cost.
Abstract:Large pre-trained vision-language models such as CLIP provide compact and general-purpose representations of text and images that are demonstrably effective across multiple downstream zero-shot prediction tasks. However, owing to the nature of their training process, these models have the potential to 1) propagate or amplify societal biases in the training data and 2) learn to rely on spurious features. This paper proposes FairerCLIP, a general approach for making zero-shot predictions of CLIP more fair and robust to spurious correlations. We formulate the problem of jointly debiasing CLIP's image and text representations in reproducing kernel Hilbert spaces (RKHSs), which affords multiple benefits: 1) Flexibility: Unlike existing approaches, which are specialized to either learn with or without ground-truth labels, FairerCLIP is adaptable to learning in both scenarios. 2) Ease of Optimization: FairerCLIP lends itself to an iterative optimization involving closed-form solvers, which leads to $4\times$-$10\times$ faster training than the existing methods. 3) Sample Efficiency: Under sample-limited conditions, FairerCLIP significantly outperforms baselines when they fail entirely. And, 4) Performance: Empirically, FairerCLIP achieves appreciable accuracy gains on benchmark fairness and spurious correlation datasets over their respective baselines.
Abstract:Acoustic-to-articulatory inversion (AAI) is to convert audio into articulator movements, such as ultrasound tongue imaging (UTI) data. An issue of existing AAI methods is only using the personalized acoustic information to derive the general patterns of tongue motions, and thus the quality of generated UTI data is limited. To address this issue, this paper proposes an audio-textual diffusion model for the UTI data generation task. In this model, the inherent acoustic characteristics of individuals related to the tongue motion details are encoded by using wav2vec 2.0, while the ASR transcriptions related to the universality of tongue motions are encoded by using BERT. UTI data are then generated by using a diffusion module. Experimental results showed that the proposed diffusion model could generate high-quality UTI data with clear tongue contour that is crucial for the linguistic analysis and clinical assessment. The project can be found on the website\footnote{https://yangyudong2020.github.io/wav2uti/
Abstract:We introduce a novel text-to-pose video editing method, ReimaginedAct. While existing video editing tasks are limited to changes in attributes, backgrounds, and styles, our method aims to predict open-ended human action changes in video. Moreover, our method can accept not only direct instructional text prompts but also `what if' questions to predict possible action changes. ReimaginedAct comprises video understanding, reasoning, and editing modules. First, an LLM is utilized initially to obtain a plausible answer for the instruction or question, which is then used for (1) prompting Grounded-SAM to produce bounding boxes of relevant individuals and (2) retrieving a set of pose videos that we have collected for editing human actions. The retrieved pose videos and the detected individuals are then utilized to alter the poses extracted from the original video. We also employ a timestep blending module to ensure the edited video retains its original content except where necessary modifications are needed. To facilitate research in text-to-pose video editing, we introduce a new evaluation dataset, WhatifVideo-1.0. This dataset includes videos of different scenarios spanning a range of difficulty levels, along with questions and text prompts. Experimental results demonstrate that existing video editing methods struggle with human action editing, while our approach can achieve effective action editing and even imaginary editing from counterfactual questions.