Abstract:Time series forecasting models typically rely on a fixed-size training set and treat all data uniformly, which may not effectively capture the specific patterns present in more challenging training samples. To address this issue, we introduce AutoTSAug, a learnable data augmentation method based on reinforcement learning. Our approach begins with an empirical analysis to determine which parts of the training data should be augmented. Specifically, we identify the so-called marginal samples by considering the prediction diversity across a set of pretrained forecasting models. Next, we propose using variational masked autoencoders as the augmentation model and applying the REINFORCE algorithm to transform the marginal samples into new data. The goal of this generative model is not only to mimic the distribution of real data but also to reduce the variance of prediction errors across the model zoo. By augmenting the marginal samples with a learnable policy, AutoTSAug substantially improves forecasting performance, advancing the prior art in this field with minimal additional computational cost.
Abstract:We introduce latent intuitive physics, a transfer learning framework for physics simulation that can infer hidden properties of fluids from a single 3D video and simulate the observed fluid in novel scenes. Our key insight is to use latent features drawn from a learnable prior distribution conditioned on the underlying particle states to capture the invisible and complex physical properties. To achieve this, we train a parametrized prior learner given visual observations to approximate the visual posterior of inverse graphics, and both the particle states and the visual posterior are obtained from a learned neural renderer. The converged prior learner is embedded in our probabilistic physics engine, allowing us to perform novel simulations on unseen geometries, boundaries, and dynamics without knowledge of the true physical parameters. We validate our model in three ways: (i) novel scene simulation with the learned visual-world physics, (ii) future prediction of the observed fluid dynamics, and (iii) supervised particle simulation. Our model demonstrates strong performance in all three tasks.