Abstract:Infrared-visible (IR-VIS) tasks, such as semantic segmentation and object detection, greatly benefit from the advantage of combining infrared and visible modalities. To inherit the general representations of the Vision Foundation Models (VFMs), task-specific dual-branch networks are designed and fully fine-tuned on downstream datasets. Although effective, this manner lacks generality and is sub-optimal due to the scarcity of downstream infrared-visible datasets and limited transferability. In this paper, we propose a novel and general fine-tuning approach, namely "IV-tuning", to parameter-efficiently harness VFMs for various infrared-visible downstream tasks. At its core, IV-tuning freezes pre-trained visible-based VFMs and integrates modal-specific prompts with adapters within the backbone, bridging the gap between VFMs and downstream infrared-visible tasks while simultaneously learning the complementarity between different modalities. By fine-tuning approximately 3% of the backbone parameters, IV-tuning outperforms full fine-tuning across various baselines in infrared-visible semantic segmentation and object detection, as well as previous state-of-the-art methods. Extensive experiments across various settings demonstrate that IV-tuning achieves superior performance with fewer training parameters, providing a good alternative to full fine-tuning and a novel method of extending visible-based models for infrared-visible tasks. The code is available at https://github.com/Yummy198913/IV-tuning.
Abstract:In recent years, the foundation models have swept the computer vision field and facilitated the development of various tasks within different modalities. However, it remains an open question on how to design an infrared foundation model. In this paper, we propose InfMAE, a foundation model in infrared modality. We release an infrared dataset, called Inf30 to address the problem of lacking large-scale data for self-supervised learning in the infrared vision community. Besides, we design an information-aware masking strategy, which is suitable for infrared images. This masking strategy allows for a greater emphasis on the regions with richer information in infrared images during the self-supervised learning process, which is conducive to learning the generalized representation. In addition, we adopt a multi-scale encoder to enhance the performance of the pre-trained encoders in downstream tasks. Finally, based on the fact that infrared images do not have a lot of details and texture information, we design an infrared decoder module, which further improves the performance of downstream tasks. Extensive experiments show that our proposed method InfMAE outperforms other supervised methods and self-supervised learning methods in three downstream tasks. Our code will be made public at https://github.com/liufangcen/InfMAE.
Abstract:Knowledge Base Question Answering (KBQA) aims to answer factoid questions based on knowledge bases. However, generating the most appropriate knowledge base query code based on Natural Language Questions (NLQ) poses a significant challenge in KBQA. In this work, we focus on the CCKS2023 Competition of Question Answering with Knowledge Graph Inference for Unmanned Systems. Inspired by the recent success of large language models (LLMs) like ChatGPT and GPT-3 in many QA tasks, we propose a ChatGPT-based Cypher Query Language (CQL) generation framework to generate the most appropriate CQL based on the given NLQ. Our generative framework contains six parts: an auxiliary model predicting the syntax-related information of CQL based on the given NLQ, a proper noun matcher extracting proper nouns from the given NLQ, a demonstration example selector retrieving similar examples of the input sample, a prompt constructor designing the input template of ChatGPT, a ChatGPT-based generation model generating the CQL, and an ensemble model to obtain the final answers from diversified outputs. With our ChatGPT-based CQL generation framework, we achieved the second place in the CCKS 2023 Question Answering with Knowledge Graph Inference for Unmanned Systems competition, achieving an F1-score of 0.92676.