Abstract:Recently, zero-shot anomaly detection (ZSAD) has emerged as a pivotal paradigm for identifying defects in unseen categories without requiring target samples in training phase. However, existing ZSAD methods struggle with the boundary of small and complex defects due to insufficient representations. Most of them use the single manually designed prompts, failing to work for diverse objects and anomalies. In this paper, we propose MFP-CLIP, a novel prompt-based CLIP framework which explores the efficacy of multi-form prompts for zero-shot industrial anomaly detection. We employ an image to text prompting(I2TP) mechanism to better represent the object in the image. MFP-CLIP enhances perception to multi-scale and complex anomalies by self prompting(SP) and a multi-patch feature aggregation(MPFA) module. To precisely localize defects, we introduce the mask prompting(MP) module to guide model to focus on potential anomaly regions. Extensive experiments are conducted on two wildly used industrial anomaly detection benchmarks, MVTecAD and VisA, demonstrating MFP-CLIP's superiority in ZSAD.
Abstract:The image translation method represents a crucial approach for mitigating information deficiencies in the infrared and visible modalities, while also facilitating the enhancement of modality-specific datasets. However, existing methods for infrared and visible image translation either achieve unidirectional modality translation or rely on cycle consistency for bidirectional modality translation, which may result in suboptimal performance. In this work, we present the cross-modality translation diffusion model (CM-Diff) for simultaneously modeling data distributions in both the infrared and visible modalities. We address this challenge by combining translation direction labels for guidance during training with cross-modality feature control. Specifically, we view the establishment of the mapping relationship between the two modalities as the process of learning data distributions and understanding modality differences, achieved through a novel Bidirectional Diffusion Training (BDT) strategy. Additionally, we propose a Statistical Constraint Inference (SCI) strategy to ensure the generated image closely adheres to the data distribution of the target modality. Experimental results demonstrate the superiority of our CM-Diff over state-of-the-art methods, highlighting its potential for generating dual-modality datasets.
Abstract:Infrared-visible (IR-VIS) tasks, such as semantic segmentation and object detection, greatly benefit from the advantage of combining infrared and visible modalities. To inherit the general representations of the Vision Foundation Models (VFMs), task-specific dual-branch networks are designed and fully fine-tuned on downstream datasets. Although effective, this manner lacks generality and is sub-optimal due to the scarcity of downstream infrared-visible datasets and limited transferability. In this paper, we propose a novel and general fine-tuning approach, namely "IV-tuning", to parameter-efficiently harness VFMs for various infrared-visible downstream tasks. At its core, IV-tuning freezes pre-trained visible-based VFMs and integrates modal-specific prompts with adapters within the backbone, bridging the gap between VFMs and downstream infrared-visible tasks while simultaneously learning the complementarity between different modalities. By fine-tuning approximately 3% of the backbone parameters, IV-tuning outperforms full fine-tuning across various baselines in infrared-visible semantic segmentation and object detection, as well as previous state-of-the-art methods. Extensive experiments across various settings demonstrate that IV-tuning achieves superior performance with fewer training parameters, providing a good alternative to full fine-tuning and a novel method of extending visible-based models for infrared-visible tasks. The code is available at https://github.com/Yummy198913/IV-tuning.
Abstract:Analyzing student actions is an important and challenging task in educational research. Existing efforts have been hampered by the lack of accessible datasets to capture the nuanced action dynamics in classrooms. In this paper, we present a new multi-label student action video (SAV) dataset for complex classroom scenes. The dataset consists of 4,324 carefully trimmed video clips from 758 different classrooms, each labeled with 15 different actions displayed by students in classrooms. Compared to existing behavioral datasets, our dataset stands out by providing a wide range of real classroom scenarios, high-quality video data, and unique challenges, including subtle movement differences, dense object engagement, significant scale differences, varied shooting angles, and visual occlusion. The increased complexity of the dataset brings new opportunities and challenges for benchmarking action detection. Innovatively, we also propose a new baseline method, a visual transformer for enhancing attention to key local details in small and dense object regions. Our method achieves excellent performance with mean Average Precision (mAP) of 67.9\% and 27.4\% on SAV and AVA, respectively. This paper not only provides the dataset but also calls for further research into AI-driven educational tools that may transform teaching methodologies and learning outcomes. The code and dataset will be released at https://github.com/Ritatanz/SAV.
Abstract:Infrared and visible dual-modality tasks such as semantic segmentation and object detection can achieve robust performance even in extreme scenes by fusing complementary information. Most current methods design task-specific frameworks, which are limited in generalization across multiple tasks. In this paper, we propose a fusion-guided infrared and visible general framework, IVGF, which can be easily extended to many high-level vision tasks. Firstly, we adopt the SOTA infrared and visible foundation models to extract the general representations. Then, to enrich the semantics information of these general representations for high-level vision tasks, we design the feature enhancement module and token enhancement module for feature maps and tokens, respectively. Besides, the attention-guided fusion module is proposed for effectively fusing by exploring the complementary information of two modalities. Moreover, we also adopt the cutout&mix augmentation strategy to conduct the data augmentation, which further improves the ability of the model to mine the regional complementary between the two modalities. Extensive experiments show that the IVGF outperforms state-of-the-art dual-modality methods in the semantic segmentation and object detection tasks. The detailed ablation studies demonstrate the effectiveness of each module, and another experiment explores the anti-missing modality ability of the proposed method in the dual-modality semantic segmentation task.
Abstract:Infrared-visible object detection aims to achieve robust object detection by leveraging the complementary information of infrared and visible image pairs. However, the commonly existing modality misalignment problem presents two challenges: fusing misalignment complementary features is difficult, and current methods cannot accurately locate objects in both modalities under misalignment conditions. In this paper, we propose a Decoupled Position Detection Transformer (DPDETR) to address these problems. Specifically, we explicitly formulate the object category, visible modality position, and infrared modality position to enable the network to learn the intrinsic relationships and output accurate positions of objects in both modalities. To fuse misaligned object features accurately, we propose a Decoupled Position Multispectral Cross-attention module that adaptively samples and aggregates multispectral complementary features with the constraint of infrared and visible reference positions. Additionally, we design a query-decoupled Multispectral Decoder structure to address the optimization gap among the three kinds of object information in our task and propose a Decoupled Position Contrastive DeNosing Training strategy to enhance the DPDETR's ability to learn decoupled positions. Experiments on DroneVehicle and KAIST datasets demonstrate significant improvements compared to other state-of-the-art methods. The code will be released at https://github.com/gjj45/DPDETR.
Abstract:The lesion segmentation on endoscopic images is challenging due to its complex and ambiguous features. Fully-supervised deep learning segmentation methods can receive good performance based on entirely pixel-level labeled dataset but greatly increase experts' labeling burden. Semi-supervised and weakly supervised methods can ease labeling burden, but heavily strengthen the learning difficulty. To alleviate this difficulty, weakly semi-supervised segmentation adopts a new annotation protocol of adding a large number of point annotation samples into a few pixel-level annotation samples. However, existing methods only mine points' limited information while ignoring reliable prior surrounding the point annotations. In this paper, we propose a weakly semi-supervised method called Point-Neighborhood Learning (PNL) framework. To mine the prior of the pixels surrounding the annotated point, we transform a single-point annotation into a circular area named a point-neighborhood. We propose point-neighborhood supervision loss and pseudo-label scoring mechanism to enhance training supervision. Point-neighborhoods are also used to augment the data diversity. Our method greatly improves performance without changing the structure of segmentation network. Comprehensive experiments show the superiority of our method over the other existing methods, demonstrating its effectiveness in point-annotated medical images. The project code will be available on: https://github.com/ParryJay/PNL.
Abstract:Infrared-visible object detection aims to achieve robust even full-day object detection by fusing the complementary information of infrared and visible images. However, highly dynamically variable complementary characteristics and commonly existing modality misalignment make the fusion of complementary information difficult. In this paper, we propose a Dynamic Adaptive Multispectral Detection Transformer (DAMSDet) to simultaneously address these two challenges. Specifically, we propose a Modality Competitive Query Selection strategy to provide useful prior information. This strategy can dynamically select basic salient modality feature representation for each object. To effectively mine the complementary information and adapt to misalignment situations, we propose a Multispectral Deformable Cross-attention module to adaptively sample and aggregate multi-semantic level features of infrared and visible images for each object. In addition, we further adopt the cascade structure of DETR to better mine complementary information. Experiments on four public datasets of different scenes demonstrate significant improvements compared to other state-of-the-art methods. The code will be released at https://github.com/gjj45/DAMSDet.
Abstract:Current state-of-the-art (SOTA) 3D object detection methods often require a large amount of 3D bounding box annotations for training. However, collecting such large-scale densely-supervised datasets is notoriously costly. To reduce the cumbersome data annotation process, we propose a novel sparsely-annotated framework, in which we just annotate one 3D object per scene. Such a sparse annotation strategy could significantly reduce the heavy annotation burden, while inexact and incomplete sparse supervision may severely deteriorate the detection performance. To address this issue, we develop the SS3D++ method that alternatively improves 3D detector training and confident fully-annotated scene generation in a unified learning scheme. Using sparse annotations as seeds, we progressively generate confident fully-annotated scenes based on designing a missing-annotated instance mining module and reliable background mining module. Our proposed method produces competitive results when compared with SOTA weakly-supervised methods using the same or even more annotation costs. Besides, compared with SOTA fully-supervised methods, we achieve on-par or even better performance on the KITTI dataset with about 5x less annotation cost, and 90% of their performance on the Waymo dataset with about 15x less annotation cost. The additional unlabeled training scenes could further boost the performance. The code will be available at https://github.com/gaocq/SS3D2.
Abstract:In recent years, the foundation models have swept the computer vision field and facilitated the development of various tasks within different modalities. However, it remains an open question on how to design an infrared foundation model. In this paper, we propose InfMAE, a foundation model in infrared modality. We release an infrared dataset, called Inf30 to address the problem of lacking large-scale data for self-supervised learning in the infrared vision community. Besides, we design an information-aware masking strategy, which is suitable for infrared images. This masking strategy allows for a greater emphasis on the regions with richer information in infrared images during the self-supervised learning process, which is conducive to learning the generalized representation. In addition, we adopt a multi-scale encoder to enhance the performance of the pre-trained encoders in downstream tasks. Finally, based on the fact that infrared images do not have a lot of details and texture information, we design an infrared decoder module, which further improves the performance of downstream tasks. Extensive experiments show that our proposed method InfMAE outperforms other supervised methods and self-supervised learning methods in three downstream tasks. Our code will be made public at https://github.com/liufangcen/InfMAE.