Abstract:Recent advances in diffusion models have demonstrated exceptional performance in generative tasks across vari-ous fields. In positron emission tomography (PET), the reduction in tracer dose leads to information loss in sino-grams. Using diffusion models to reconstruct missing in-formation can improve imaging quality. Traditional diffu-sion models effectively use Gaussian noise for image re-constructions. However, in low-dose PET reconstruction, Gaussian noise can worsen the already sparse data by introducing artifacts and inconsistencies. To address this issue, we propose a diffusion model named residual esti-mation diffusion (RED). From the perspective of diffusion mechanism, RED uses the residual between sinograms to replace Gaussian noise in diffusion process, respectively sets the low-dose and full-dose sinograms as the starting point and endpoint of reconstruction. This mechanism helps preserve the original information in the low-dose sinogram, thereby enhancing reconstruction reliability. From the perspective of data consistency, RED introduces a drift correction strategy to reduce accumulated prediction errors during the reverse process. Calibrating the inter-mediate results of reverse iterations helps maintain the data consistency and enhances the stability of reconstruc-tion process. Experimental results show that RED effec-tively improves the quality of low-dose sinograms as well as the reconstruction results. The code is available at: https://github.com/yqx7150/RED.
Abstract:Infrared and visible dual-modality tasks such as semantic segmentation and object detection can achieve robust performance even in extreme scenes by fusing complementary information. Most current methods design task-specific frameworks, which are limited in generalization across multiple tasks. In this paper, we propose a fusion-guided infrared and visible general framework, IVGF, which can be easily extended to many high-level vision tasks. Firstly, we adopt the SOTA infrared and visible foundation models to extract the general representations. Then, to enrich the semantics information of these general representations for high-level vision tasks, we design the feature enhancement module and token enhancement module for feature maps and tokens, respectively. Besides, the attention-guided fusion module is proposed for effectively fusing by exploring the complementary information of two modalities. Moreover, we also adopt the cutout&mix augmentation strategy to conduct the data augmentation, which further improves the ability of the model to mine the regional complementary between the two modalities. Extensive experiments show that the IVGF outperforms state-of-the-art dual-modality methods in the semantic segmentation and object detection tasks. The detailed ablation studies demonstrate the effectiveness of each module, and another experiment explores the anti-missing modality ability of the proposed method in the dual-modality semantic segmentation task.
Abstract:Transferable adversarial attacks pose significant threats to deep neural networks, particularly in black-box scenarios where internal model information is inaccessible. Studying adversarial attack methods helps advance the performance of defense mechanisms and explore model vulnerabilities. These methods can uncover and exploit weaknesses in models, promoting the development of more robust architectures. However, current methods for transferable attacks often come with substantial computational costs, limiting their deployment and application, especially in edge computing scenarios. Adversarial generative models, such as Generative Adversarial Networks (GANs), are characterized by their ability to generate samples without the need for retraining after an initial training phase. GE-AdvGAN, a recent method for transferable adversarial attacks, is based on this principle. In this paper, we propose a novel general framework for gradient editing-based transferable attacks, named GE-AdvGAN+, which integrates nearly all mainstream attack methods to enhance transferability while significantly reducing computational resource consumption. Our experiments demonstrate the compatibility and effectiveness of our framework. Compared to the baseline AdvGAN, our best-performing method, GE-AdvGAN++, achieves an average ASR improvement of 47.8. Additionally, it surpasses the latest competing algorithm, GE-AdvGAN, with an average ASR increase of 5.9. The framework also exhibits enhanced computational efficiency, achieving 2217.7 FPS, outperforming traditional methods such as BIM and MI-FGSM. The implementation code for our GE-AdvGAN+ framework is available at https://github.com/GEAdvGANP
Abstract:In recent times, the swift evolution of adversarial attacks has captured widespread attention, particularly concerning their transferability and other performance attributes. These techniques are primarily executed at the sample level, frequently overlooking the intrinsic parameters of models. Such neglect suggests that the perturbations introduced in adversarial samples might have the potential for further reduction. Given the essence of adversarial attacks is to impair model integrity with minimal noise on original samples, exploring avenues to maximize the utility of such perturbations is imperative. Against this backdrop, we have delved into the complexities of adversarial attack algorithms, dissecting the adversarial process into two critical phases: the Directional Supervision Process (DSP) and the Directional Optimization Process (DOP). While DSP determines the direction of updates based on the current samples and model parameters, it has been observed that existing model parameters may not always be conducive to adversarial attacks. The impact of models on adversarial efficacy is often overlooked in current research, leading to the neglect of DSP. We propose that under certain conditions, fine-tuning model parameters can significantly enhance the quality of DSP. For the first time, we propose that under certain conditions, fine-tuning model parameters can significantly improve the quality of the DSP. We provide, for the first time, rigorous mathematical definitions and proofs for these conditions, and introduce multiple methods for fine-tuning model parameters within DSP. Our extensive experiments substantiate the effectiveness of the proposed P3A method. Our code is accessible at: https://anonymous.4open.science/r/P3A-A12C/
Abstract:The classical temporal point process (TPP) constructs an intensity function by taking the occurrence times into account. Nevertheless, occurrence time may not be the only relevant factor, other contextual data, termed covariates, may also impact the event evolution. Incorporating such covariates into the model is beneficial, while distinguishing their relevance to the event dynamics is of great practical significance. In this work, we propose a Transformer-based covariate temporal point process (TransFeat-TPP) model to improve the interpretability of deep covariate-TPPs while maintaining powerful expressiveness. TransFeat-TPP can effectively model complex relationships between events and covariates, and provide enhanced interpretability by discerning the importance of various covariates. Experimental results on synthetic and real datasets demonstrate improved prediction accuracy and consistently interpretable feature importance when compared to existing deep covariate-TPPs.
Abstract:The expansion of neural network sizes and the enhancement of image resolution through modern camera sensors result in heightened memory and power demands for neural networks. Reducing peak memory, which is the maximum memory consumed during the execution of a neural network, is critical to deploy neural networks on edge devices with limited memory budget. A naive approach to reducing peak memory is aggressive down-sampling of feature maps via pooling with large stride, which often results in unacceptable degradation in network performance. To mitigate this problem, we propose residual encoded distillation (ReDistill) for peak memory reduction in a teacher-student framework, in which a student network with less memory is derived from the teacher network using aggressive pooling. We apply our distillation method to multiple problems in computer vision including image classification and diffusion based image generation. For image classification, our method yields 2x-3.2x measured peak memory on an edge GPU with negligible degradation in accuracy for most CNN based architectures. Additionally, our method yields improved test accuracy for tiny vision transformer (ViT) based models distilled from large CNN based teacher architectures. For diffusion-based image generation, our proposed distillation method yields a denoising network with 4x lower theoretical peak memory while maintaining decent diversity and fidelity for image generation. Experiments demonstrate our method's superior performance compared to other feature-based and response-based distillation methods.
Abstract:Humans naturally employ linguistic instructions to convey knowledge, a process that proves significantly more complex for machines, especially within the context of multitask robotic manipulation environments. Natural language, moreover, serves as the primary medium through which humans acquire new knowledge, presenting a potentially intuitive bridge for translating concepts understandable by humans into formats that can be learned by machines. In pursuit of facilitating this integration, we introduce an explainable behavior cloning agent, named Ex-PERACT, specifically designed for manipulation tasks. This agent is distinguished by its hierarchical structure, which incorporates natural language to enhance the learning process. At the top level, the model is tasked with learning a discrete skill code, while at the bottom level, the policy network translates the problem into a voxelized grid and maps the discretized actions to voxel grids. We evaluate our method across eight challenging manipulation tasks utilizing the RLBench benchmark, demonstrating that Ex-PERACT not only achieves competitive policy performance but also effectively bridges the gap between human instructions and machine execution in complex environments.
Abstract:Recommender Systems (RS) have significantly advanced online content discovery and personalized decision-making. However, emerging vulnerabilities in RS have catalyzed a paradigm shift towards Trustworthy RS (TRS). Despite numerous progress on TRS, most of them focus on data correlations while overlooking the fundamental causal nature in recommendation. This drawback hinders TRS from identifying the cause in addressing trustworthiness issues, leading to limited fairness, robustness, and explainability. To bridge this gap, causal learning emerges as a class of promising methods to augment TRS. These methods, grounded in reliable causality, excel in mitigating various biases and noises while offering insightful explanations for TRS. However, there lacks a timely survey in this vibrant area. This paper creates an overview of TRS from the perspective of causal learning. We begin by presenting the advantages and common procedures of Causality-oriented TRS (CTRS). Then, we identify potential trustworthiness challenges at each stage and link them to viable causal solutions, followed by a classification of CTRS methods. Finally, we discuss several future directions for advancing this field.
Abstract:In machine learning, the exponential growth of data and the associated ``curse of dimensionality'' pose significant challenges, particularly with expansive yet sparse datasets. Addressing these challenges, multi-view ensemble learning (MEL) has emerged as a transformative approach, with feature partitioning (FP) playing a pivotal role in constructing artificial views for MEL. Our study introduces the Semantic-Preserving Feature Partitioning (SPFP) algorithm, a novel method grounded in information theory. The SPFP algorithm effectively partitions datasets into multiple semantically consistent views, enhancing the MEL process. Through extensive experiments on eight real-world datasets, ranging from high-dimensional with limited instances to low-dimensional with high instances, our method demonstrates notable efficacy. It maintains model accuracy while significantly improving uncertainty measures in scenarios where high generalization performance is achievable. Conversely, it retains uncertainty metrics while enhancing accuracy where high generalization accuracy is less attainable. An effect size analysis further reveals that the SPFP algorithm outperforms benchmark models by large effect size and reduces computational demands through effective dimensionality reduction. The substantial effect sizes observed in most experiments underscore the algorithm's significant improvements in model performance.
Abstract:Recent one-shot Neural Architecture Search algorithms rely on training a hardware-agnostic super-network tailored to a specific task and then extracting efficient sub-networks for different hardware platforms. Popular approaches separate the training of super-networks from the search for sub-networks, often employing predictors to alleviate the computational overhead associated with search. Additionally, certain methods also incorporate the quantization policy within the search space. However, while the quantization policy search for convolutional neural networks is well studied, the extension of these methods to transformers and especially foundation models remains under-explored. In this paper, we demonstrate that by using multi-objective search algorithms paired with lightly trained predictors, we can efficiently search for both the sub-network architecture and the corresponding quantization policy and outperform their respective baselines across different performance objectives such as accuracy, model size, and latency. Specifically, we demonstrate that our approach performs well across both uni-modal (ViT and BERT) and multi-modal (BEiT-3) transformer-based architectures as well as convolutional architectures (ResNet). For certain networks, we demonstrate an improvement of up to $4.80x$ and $3.44x$ for latency and model size respectively, without degradation in accuracy compared to the fully quantized INT8 baselines.