Abstract:The performance emergence of large language models (LLMs) driven by data scaling laws makes the selection of pre-training data increasingly important. However, existing methods rely on limited heuristics and human intuition, lacking comprehensive and clear guidelines. To address this, we are inspired by ``reverse thinking'' -- prompting LLMs to self-identify which criteria benefit its performance. As its pre-training capabilities are related to perplexity (PPL), we derive 14 quality criteria from the causes of text perplexity anomalies and introduce 15 common application domains to support domain mixing. In this paper, we train a Data Manager (DataMan) to learn quality ratings and domain recognition from pointwise rating, and use it to annotate a 447B token pre-training corpus with 14 quality ratings and domain type. Our experiments validate our approach, using DataMan to select 30B tokens to train a 1.3B-parameter language model, demonstrating significant improvements in in-context learning (ICL), perplexity, and instruction-following ability over the state-of-the-art baseline. The best-performing model, based on the Overall Score l=5 surpasses a model trained with 50% more data using uniform sampling. We continue pre-training with high-rated, domain-specific data annotated by DataMan to enhance domain-specific ICL performance and thus verify DataMan's domain mixing ability. Our findings emphasize the importance of quality ranking, the complementary nature of quality criteria, and their low correlation with perplexity, analyzing misalignment between PPL and ICL performance. We also thoroughly analyzed our pre-training dataset, examining its composition, the distribution of quality ratings, and the original document sources.
Abstract:As automated trading gains traction in the financial market, algorithmic investment strategies are increasingly prominent. While Large Language Models (LLMs) and Agent-based models exhibit promising potential in real-time market analysis and trading decisions, they still experience a significant -20% loss when confronted with rapid declines or frequent fluctuations, impeding their practical application. Hence, there is an imperative to explore a more robust and resilient framework. This paper introduces an innovative multi-agent system, HedgeAgents, aimed at bolstering system robustness via ``hedging'' strategies. In this well-balanced system, an array of hedging agents has been tailored, where HedgeAgents consist of a central fund manager and multiple hedging experts specializing in various financial asset classes. These agents leverage LLMs' cognitive capabilities to make decisions and coordinate through three types of conferences. Benefiting from the powerful understanding of LLMs, our HedgeAgents attained a 70% annualized return and a 400% total return over a period of 3 years. Moreover, we have observed with delight that HedgeAgents can even formulate investment experience comparable to those of human experts (https://hedgeagents.github.io/).
Abstract:Real-Time Bidding (RTB) enables advertisers to place competitive bids on impression opportunities instantaneously, striving for cost-effectiveness in a highly competitive landscape. Although RTB has widely benefited from the utilization of technologies such as deep learning and reinforcement learning, the reliability of related methods often encounters challenges due to the discrepancies between online and offline environments and the rapid fluctuations of online bidding. To handle these challenges, RTBAgent is proposed as the first RTB agent system based on large language models (LLMs), which synchronizes real competitive advertising bidding environments and obtains bidding prices through an integrated decision-making process. Specifically, obtaining reasoning ability through LLMs, RTBAgent is further tailored to be more professional for RTB via involved auxiliary modules, i.e., click-through rate estimation model, expert strategy knowledge, and daily reflection. In addition, we propose a two-step decision-making process and multi-memory retrieval mechanism, which enables RTBAgent to review historical decisions and transaction records and subsequently make decisions more adaptive to market changes in real-time bidding. Empirical testing with real advertising datasets demonstrates that RTBAgent significantly enhances profitability. The RTBAgent code will be publicly accessible at: https://github.com/CaiLeng/RTBAgent.
Abstract:Multimodal large language models (MLLMs) are flourishing, but mainly focus on images with less attention than videos, especially in sub-fields such as prompt engineering, video chain-of-thought (CoT), and instruction tuning on videos. Therefore, we try to explore the collection of CoT datasets in videos to lead to video OpenQA and improve the reasoning ability of MLLMs. Unfortunately, making such video CoT datasets is not an easy task. Given that human annotation is too cumbersome and expensive, while machine-generated is not reliable due to the hallucination issue, we develop an automatic annotation tool that combines machine and human experts, under the active learning paradigm. Active learning is an interactive strategy between the model and human experts, in this way, the workload of human labeling can be reduced and the quality of the dataset can be guaranteed. With the help of the automatic annotation tool, we strive to contribute three datasets, namely VideoCoT, TopicQA, TopicCoT. Furthermore, we propose a simple but effective benchmark based on the collected datasets, which exploits CoT to maximize the complex reasoning capabilities of MLLMs. Extensive experiments demonstrate the effectiveness our solution.
Abstract:The task of stock earnings forecasting has received considerable attention due to the demand investors in real-world scenarios. However, compared with financial institutions, it is not easy for ordinary investors to mine factors and analyze news. On the other hand, although large language models in the financial field can serve users in the form of dialogue robots, it still requires users to have financial knowledge to ask reasonable questions. To serve the user experience, we aim to build an automatic system, FinReport, for ordinary investors to collect information, analyze it, and generate reports after summarizing. Specifically, our FinReport is based on financial news announcements and a multi-factor model to ensure the professionalism of the report. The FinReport consists of three modules: news factorization module, return forecasting module, risk assessment module. The news factorization module involves understanding news information and combining it with stock factors, the return forecasting module aim to analysis the impact of news on market sentiment, and the risk assessment module is adopted to control investment risk. Extensive experiments on real-world datasets have well verified the effectiveness and explainability of our proposed FinReport. Our codes and datasets are available at https://github.com/frinkleko/FinReport.
Abstract:The conventional evaluation protocols on machine learning models rely heavily on a labeled, i.i.d-assumed testing dataset, which is not often present in real world applications. The Automated Model Evaluation (AutoEval) shows an alternative to this traditional workflow, by forming a proximal prediction pipeline of the testing performance without the presence of ground-truth labels. Despite its recent successes, the AutoEval frameworks still suffer from an overconfidence issue, substantial storage and computational cost. In that regard, we propose a novel measure -- Meta-Distribution Energy (MDE) -- that allows the AutoEval framework to be both more efficient and effective. The core of the MDE is to establish a meta-distribution statistic, on the information (energy) associated with individual samples, then offer a smoother representation enabled by energy-based learning. We further provide our theoretical insights by connecting the MDE with the classification loss. We provide extensive experiments across modalities, datasets and different architectural backbones to validate MDE's validity, together with its superiority compared with prior approaches. We also prove MDE's versatility by showing its seamless integration with large-scale models, and easy adaption to learning scenarios with noisy- or imbalanced- labels. Code and data are available: https://github.com/pengr/Energy_AutoEval
Abstract:The fine-grained attribute descriptions can significantly supplement the valuable semantic information for person image, which is vital to the success of person re-identification (ReID) task. However, current ReID algorithms typically failed to effectively leverage the rich contextual information available, primarily due to their reliance on simplistic and coarse utilization of image attributes. Recent advances in artificial intelligence generated content have made it possible to automatically generate plentiful fine-grained attribute descriptions and make full use of them. Thereby, this paper explores the potential of using the generated multiple person attributes as prompts in ReID tasks with off-the-shelf (large) models for more accurate retrieval results. To this end, we present a new framework called Multi-Prompts ReID (MP-ReID), based on prompt learning and language models, to fully dip fine attributes to assist ReID task. Specifically, MP-ReID first learns to hallucinate diverse, informative, and promptable sentences for describing the query images. This procedure includes (i) explicit prompts of which attributes a person has and furthermore (ii) implicit learnable prompts for adjusting/conditioning the criteria used towards this person identity matching. Explicit prompts are obtained by ensembling generation models, such as ChatGPT and VQA models. Moreover, an alignment module is designed to fuse multi-prompts (i.e., explicit and implicit ones) progressively and mitigate the cross-modal gap. Extensive experiments on the existing attribute-involved ReID datasets, namely, Market1501 and DukeMTMC-reID, demonstrate the effectiveness and rationality of the proposed MP-ReID solution.
Abstract:The field of large language models (LLMs) has made significant progress, and their knowledge storage capacity is approaching that of human beings. Furthermore, advanced techniques, such as prompt learning and reinforcement learning, are being employed to address ethical concerns and hallucination problems associated with LLMs, bringing them closer to aligning with human values. This situation naturally raises the question of whether LLMs with human-like abilities possess a human-like personality? In this paper, we aim to investigate the feasibility of using the Myers-Briggs Type Indicator (MBTI), a widespread human personality assessment tool, as an evaluation metric for LLMs. Specifically, extensive experiments will be conducted to explore: 1) the personality types of different LLMs, 2) the possibility of changing the personality types by prompt engineering, and 3) How does the training dataset affect the model's personality. Although the MBTI is not a rigorous assessment, it can still reflect the similarity between LLMs and human personality. In practice, the MBTI has the potential to serve as a rough indicator. Our codes are available at https://github.com/HarderThenHarder/transformers_tasks/tree/main/LLM/llms_mbti.
Abstract:Sign language translation (SLT) systems, which are often decomposed into video-to-gloss (V2G) recognition and gloss-to-text (G2T) translation through the pivot gloss, heavily relies on the availability of large-scale parallel G2T pairs. However, the manual annotation of pivot gloss, which is a sequence of transcribed written-language words in the order in which they are signed, further exacerbates the scarcity of data for SLT. To address this issue, this paper proposes a simple and efficient rule transformation method to transcribe the large-scale target monolingual data into its pseudo glosses automatically for enhancing the SLT translation. Empirical results show that the proposed approach can significantly improve the performance of SLT, especially achieving state-of-the-art results on two SLT benchmark datasets PHEONIX-WEATHER 2014T and ASLG-PC12. Our code has been released at: https://github.com/pengr/Mono\_SLT.
Abstract:Past works on multimodal machine translation (MMT) elevate bilingual setup by incorporating additional aligned vision information. However, an image-must requirement of the multimodal dataset largely hinders MMT's development -- namely that it demands an aligned form of [image, source text, target text]. This limitation is generally troublesome during the inference phase especially when the aligned image is not provided as in the normal NMT setup. Thus, in this work, we introduce IKD-MMT, a novel MMT framework to support the image-free inference phase via an inversion knowledge distillation scheme. In particular, a multimodal feature generator is executed with a knowledge distillation module, which directly generates the multimodal feature from (only) source texts as the input. While there have been a few prior works entertaining the possibility to support image-free inference for machine translation, their performances have yet to rival the image-must translation. In our experiments, we identify our method as the first image-free approach to comprehensively rival or even surpass (almost) all image-must frameworks, and achieved the state-of-the-art result on the often-used Multi30k benchmark. Our code and data are available at: https://github.com/pengr/IKD-mmt/tree/master..