Abstract:We propose a novel design of a dual-function radar communication (DFRC) system aided by an Intelligent Reflecting Surface (IRS). We consider a scenario with one target and multiple communication receivers, where there is no line-of-sight between the radar and the target. The radar precoding matrix and the IRS weights are optimally designed to maximize the weighted sum of the signal-to-noise ratio (SNR) at the radar receiver and the SNR at the communication receivers subject to power constraints and constant modulus constraints on the IRS weights. The problem is decoupled into two sub-problems, namely, waveform design and IRS weight design, and is solved via alternating optimization. The former subproblem is solved via linear programming, and the latter via manifold optimization with a quartic polynomial objective. The key contribution of this paper lies in solving the IRS weight design sub-problem that is based on the optimization of a quartic objective function in the IRS weights, and is subject to unit modulus-constraint on the IRS weights. Simulation results are provided to show the convergence behavior of the proposed algorithm under different system configurations, and the effectiveness of using IRS to improve radar and communication performance.
Abstract:We consider two important aspects in understanding and editing images: modeling regular, program-like texture or patterns in 2D planes, and 3D posing of these planes in the scene. Unlike prior work on image-based program synthesis, which assumes the image contains a single visible 2D plane, we present Box Program Induction (BPI), which infers a program-like scene representation that simultaneously models repeated structure on multiple 2D planes, the 3D position and orientation of the planes, and camera parameters, all from a single image. Our model assumes a box prior, i.e., that the image captures either an inner view or an outer view of a box in 3D. It uses neural networks to infer visual cues such as vanishing points, wireframe lines to guide a search-based algorithm to find the program that best explains the image. Such a holistic, structured scene representation enables 3D-aware interactive image editing operations such as inpainting missing pixels, changing camera parameters, and extrapolate the image contents.
Abstract:We study the inverse graphics problem of inferring a holistic representation for natural images. Given an input image, our goal is to induce a neuro-symbolic, program-like representation that jointly models camera poses, object locations, and global scene structures. Such high-level, holistic scene representations further facilitate low-level image manipulation tasks such as inpainting. We formulate this problem as jointly finding the camera pose and scene structure that best describe the input image. The benefits of such joint inference are two-fold: scene regularity serves as a new cue for perspective correction, and in turn, correct perspective correction leads to a simplified scene structure, similar to how the correct shape leads to the most regular texture in shape from texture. Our proposed framework, Perspective Plane Program Induction (P3I), combines search-based and gradient-based algorithms to efficiently solve the problem. P3I outperforms a set of baselines on a collection of Internet images, across tasks including camera pose estimation, global structure inference, and down-stream image manipulation tasks.
Abstract:Humans are capable of building holistic representations for images at various levels, from local objects, to pairwise relations, to global structures. The interpretation of structures involves reasoning over repetition and symmetry of the objects in the image. In this paper, we present the Program-Guided Image Manipulator (PG-IM), inducing neuro-symbolic program-like representations to represent and manipulate images. Given an image, PG-IM detects repeated patterns, induces symbolic programs, and manipulates the image using a neural network that is guided by the program. PG-IM learns from a single image, exploiting its internal statistics. Despite trained only on image inpainting, PG-IM is directly capable of extrapolation and regularity editing in a unified framework. Extensive experiments show that PG-IM achieves superior performance on all the tasks.
Abstract:Replacing the background and simultaneously adjusting foreground objects is a challenging task in image editing. Current techniques for generating such images relies heavily on user interactions with image editing softwares, which is a tedious job for professional retouchers. To reduce their workload, some exciting progress has been made on generating images with a given background. However, these models can neither adjust the position and scale of the foreground objects, nor guarantee the semantic consistency between foreground and background. To overcome these limitations, we propose a framework -- ART(Auto-Retoucher), to generate images with sufficient semantic and spatial consistency. Images are first processed by semantic matting and scene parsing modules, then a multi-task verifier model will give two confidence scores for the current background and position setting. We demonstrate that our jointly optimized verifier model successfully improves the visual consistency, and our ART framework performs well on images with the human body as foregrounds.