additional authors not shown
Abstract:In this report, we introduce Qwen2.5, a comprehensive series of large language models (LLMs) designed to meet diverse needs. Compared to previous iterations, Qwen 2.5 has been significantly improved during both the pre-training and post-training stages. In terms of pre-training, we have scaled the high-quality pre-training datasets from the previous 7 trillion tokens to 18 trillion tokens. This provides a strong foundation for common sense, expert knowledge, and reasoning capabilities. In terms of post-training, we implement intricate supervised finetuning with over 1 million samples, as well as multistage reinforcement learning. Post-training techniques enhance human preference, and notably improve long text generation, structural data analysis, and instruction following. To handle diverse and varied use cases effectively, we present Qwen2.5 LLM series in rich sizes. Open-weight offerings include base and instruction-tuned models, with quantized versions available. In addition, for hosted solutions, the proprietary models currently include two mixture-of-experts (MoE) variants: Qwen2.5-Turbo and Qwen2.5-Plus, both available from Alibaba Cloud Model Studio. Qwen2.5 has demonstrated top-tier performance on a wide range of benchmarks evaluating language understanding, reasoning, mathematics, coding, human preference alignment, etc. Specifically, the open-weight flagship Qwen2.5-72B-Instruct outperforms a number of open and proprietary models and demonstrates competitive performance to the state-of-the-art open-weight model, Llama-3-405B-Instruct, which is around 5 times larger. Qwen2.5-Turbo and Qwen2.5-Plus offer superior cost-effectiveness while performing competitively against GPT-4o-mini and GPT-4o respectively. Additionally, as the foundation, Qwen2.5 models have been instrumental in training specialized models such as Qwen2.5-Math, Qwen2.5-Coder, QwQ, and multimodal models.
Abstract:Simultaneous multislice (SMS) imaging is a powerful technique for accelerating magnetic resonance imaging (MRI) acquisitions. However, SMS reconstruction remains challenging due to the complex signal interactions between and within the excited slices. This study presents a robust SMS MRI reconstruction method using deep generative priors. Starting from Gaussian noise, we leverage denoising diffusion probabilistic models (DDPM) to gradually recover the individual slices through reverse diffusion iterations while imposing data consistency from the measured k-space under readout concatenation framework. The posterior sampling procedure is designed such that the DDPM training can be performed on single-slice images without special adjustments for SMS tasks. Additionally, our method integrates a low-frequency enhancement (LFE) module to address a practical issue that SMS-accelerated fast spin echo (FSE) and echo-planar imaging (EPI) sequences cannot easily embed autocalibration signals. Extensive experiments demonstrate that our approach consistently outperforms existing methods and generalizes well to unseen datasets. The code is available at https://github.com/Solor-pikachu/ROGER after the review process.
Abstract:This report introduces the Qwen2 series, the latest addition to our large language models and large multimodal models. We release a comprehensive suite of foundational and instruction-tuned language models, encompassing a parameter range from 0.5 to 72 billion, featuring dense models and a Mixture-of-Experts model. Qwen2 surpasses most prior open-weight models, including its predecessor Qwen1.5, and exhibits competitive performance relative to proprietary models across diverse benchmarks on language understanding, generation, multilingual proficiency, coding, mathematics, and reasoning. The flagship model, Qwen2-72B, showcases remarkable performance: 84.2 on MMLU, 37.9 on GPQA, 64.6 on HumanEval, 89.5 on GSM8K, and 82.4 on BBH as a base language model. The instruction-tuned variant, Qwen2-72B-Instruct, attains 9.1 on MT-Bench, 48.1 on Arena-Hard, and 35.7 on LiveCodeBench. Moreover, Qwen2 demonstrates robust multilingual capabilities, proficient in approximately 30 languages, spanning English, Chinese, Spanish, French, German, Arabic, Russian, Korean, Japanese, Thai, Vietnamese, and more, underscoring its versatility and global reach. To foster community innovation and accessibility, we have made the Qwen2 model weights openly available on Hugging Face and ModelScope, and the supplementary materials including example code on GitHub. These platforms also include resources for quantization, fine-tuning, and deployment, facilitating a wide range of applications and research endeavors.
Abstract:Transformer has become one of the most popular architectures for multivariate time series (MTS) forecasting. Recent Transformer-based MTS models generally prefer channel-independent structures with the observation that channel independence can alleviate noise and distribution drift issues, leading to more robustness. Nevertheless, it is essential to note that channel dependency remains an inherent characteristic of MTS, carrying valuable information. Designing a model that incorporates merits of both channel-independent and channel-mixing structures is a key to further improvement of MTS forecasting, which poses a challenging conundrum. To address the problem, an injection method for global information into channel-independent Transformer, InjectTST, is proposed in this paper. Instead of designing a channel-mixing model directly, we retain the channel-independent backbone and gradually inject global information into individual channels in a selective way. A channel identifier, a global mixing module and a self-contextual attention module are devised in InjectTST. The channel identifier can help Transformer distinguish channels for better representation. The global mixing module produces cross-channel global information. Through the self-contextual attention module, the independent channels can selectively concentrate on useful global information without robustness degradation, and channel mixing is achieved implicitly. Experiments indicate that InjectTST can achieve stable improvement compared with state-of-the-art models.
Abstract:The emergence of large language models (LLMs) has revolutionized natural language processing tasks. However, existing instruction-tuning datasets suffer from occupational bias: the majority of data relates to only a few occupations, which hampers the instruction-tuned LLMs to generate helpful responses to professional queries from practitioners in specific fields. To mitigate this issue and promote occupation-inclusive LLMs, we create an instruction-tuning dataset named \emph{OccuQuest}, which contains 110,000+ prompt-completion pairs and 30,000+ dialogues covering over 1,000 occupations in 26 occupational categories. We systematically request ChatGPT, organizing queries hierarchically based on Occupation, Responsibility, Topic, and Question, to ensure a comprehensive coverage of occupational specialty inquiries. By comparing with three commonly used datasets (Dolly, ShareGPT, and WizardLM), we observe that OccuQuest exhibits a more balanced distribution across occupations. Furthermore, we assemble three test sets for comprehensive evaluation, an occu-test set covering 25 occupational categories, an estate set focusing on real estate, and an occu-quora set containing real-world questions from Quora. We then fine-tune LLaMA on OccuQuest to obtain OccuLLaMA, which significantly outperforms state-of-the-art LLaMA variants (Vicuna, Tulu, and WizardLM) on professional questions in GPT-4 and human evaluations. Notably, on the occu-quora set, OccuLLaMA reaches a high win rate of 86.4\% against WizardLM.
Abstract:Long-term time series forecasting plays an important role in various real-world scenarios. Recent deep learning methods for long-term series forecasting tend to capture the intricate patterns of time series by decomposition-based or sampling-based methods. However, most of the extracted patterns may include unpredictable noise and lack good interpretability. Moreover, the multivariate series forecasting methods usually ignore the individual characteristics of each variate, which may affecting the prediction accuracy. To capture the intrinsic patterns of time series, we propose a novel deep learning network architecture, named Multi-resolution Periodic Pattern Network (MPPN), for long-term series forecasting. We first construct context-aware multi-resolution semantic units of time series and employ multi-periodic pattern mining to capture the key patterns of time series. Then, we propose a channel adaptive module to capture the perceptions of multivariate towards different patterns. In addition, we present an entropy-based method for evaluating the predictability of time series and providing an upper bound on the prediction accuracy before forecasting. Our experimental evaluation on nine real-world benchmarks demonstrated that MPPN significantly outperforms the state-of-the-art Transformer-based, decomposition-based and sampling-based methods for long-term series forecasting.
Abstract:Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.
Abstract:Cellular traffic prediction is an indispensable part for intelligent telecommunication networks. Nevertheless, due to the frequent user mobility and complex network scheduling mechanisms, cellular traffic often inherits complicated spatial-temporal patterns, making the prediction incredibly challenging. Although recent advanced algorithms such as graph-based prediction approaches have been proposed, they frequently model spatial dependencies based on static or dynamic graphs and neglect the coexisting multiple spatial correlations induced by traffic generation. Meanwhile, some works lack the consideration of the diverse cellular traffic patterns, result in suboptimal prediction results. In this paper, we propose a novel deep learning network architecture, Adaptive Hybrid Spatial-Temporal Graph Neural Network (AHSTGNN), to tackle the cellular traffic prediction problem. First, we apply adaptive hybrid graph learning to learn the compound spatial correlations among cell towers. Second, we implement a Temporal Convolution Module with multi-periodic temporal data input to capture the nonlinear temporal dependencies. In addition, we introduce an extra Spatial-Temporal Adaptive Module to conquer the heterogeneity lying in cell towers. Our experiments on two real-world cellular traffic datasets show AHSTGNN outperforms the state-of-the-art by a significant margin, illustrating the superior scalability of our method for spatial-temporal cellular traffic prediction.
Abstract:Product description generation is a challenging and under-explored task. Most such work takes a set of product attributes as inputs then generates a description from scratch in a single pass. However, this widespread paradigm might be limited when facing the dynamic wishes of users on constraining the description, such as deleting or adding the content of a user-specified attribute based on the previous version. To address this challenge, we explore a new draft-command-edit manner in description generation, leading to the proposed new task-controllable text editing in E-commerce. More specifically, we allow systems to receive a command (deleting or adding) from the user and then generate a description by flexibly modifying the content based on the previous version. It is easier and more practical to meet the new needs by modifying previous versions than generating from scratch. Furthermore, we design a data augmentation method to remedy the low resource challenge in this task, which contains a model-based and a rule-based strategy to imitate the edit by humans. To accompany this new task, we present a human-written draft-command-edit dataset called E-cEdits and a new metric "Attribute Edit". Our experimental results show that using the new data augmentation method outperforms baselines to a greater extent in both automatic and human evaluations.
Abstract:Attribute-based Controlled Text Generation (CTG) refers to generating sentences that satisfy desirable attributes (e.g., emotions and topics). Existing works often utilize fine-tuning or resort to extra attribute classifiers, yet suffer from storage and inference time increases. To address these concerns, we explore attribute-based CTG in a prompt-based manner. In short, the proposed Tailor represents each attribute as a pre-trained continuous vector (i.e., single-attribute prompt) and guides the generation of a fixed PLM switch to a pre-specified attribute. We experimentally find that these prompts can be simply concatenated as a whole to multi-attribute CTG without any re-training, yet raises problems of fluency decrease and position sensitivity. To this end, Tailor provides a multi-attribute prompt mask and a re-indexing position-ids sequence to bridge the gap between the training (one prompt for each task) and testing stage (concatenating more than one prompt). To further enhance such single-attribute prompt combinations, Tailor also introduces a trainable prompt connector, which can be concatenated with any two single-attribute prompts to multi-attribute text generation. Experiments on 11 attribute-specific generation tasks demonstrate strong performances of Tailor on both single-attribute and multi-attribute CTG, with 0.08\% training parameters of a GPT-2.