Abstract:Neural Radiance Fields (NeRFs) have demonstrated prominent performance in novel view synthesis. However, their input heavily relies on image acquisition under normal light conditions, making it challenging to learn accurate scene representation in low-light environments where images typically exhibit significant noise and severe color distortion. To address these challenges, we propose a novel approach, Bright-NeRF, which learns enhanced and high-quality radiance fields from multi-view low-light raw images in an unsupervised manner. Our method simultaneously achieves color restoration, denoising, and enhanced novel view synthesis. Specifically, we leverage a physically-inspired model of the sensor's response to illumination and introduce a chromatic adaptation loss to constrain the learning of response, enabling consistent color perception of objects regardless of lighting conditions. We further utilize the raw data's properties to expose the scene's intensity automatically. Additionally, we have collected a multi-view low-light raw image dataset to advance research in this field. Experimental results demonstrate that our proposed method significantly outperforms existing 2D and 3D approaches. Our code and dataset will be made publicly available.
Abstract:Recently, implicit neural representations (INRs) have attracted increasing attention for multi-dimensional data recovery. However, INRs simply map coordinates via a multi-layer perception (MLP) to corresponding values, ignoring the inherent semantic information of the data. To leverage semantic priors from the data, we propose a novel Superpixel-informed INR (S-INR). Specifically, we suggest utilizing generalized superpixel instead of pixel as an alternative basic unit of INR for multi-dimensional data (e.g., images and weather data). The coordinates of generalized superpixels are first fed into exclusive attention-based MLPs, and then the intermediate results interact with a shared dictionary matrix. The elaborately designed modules in S-INR allow us to ingenuously exploit the semantic information within and across generalized superpixels. Extensive experiments on various applications validate the effectiveness and efficacy of our S-INR compared to state-of-the-art INR methods.
Abstract:Artificial intelligence (AI) has become a buzz word since Google's AlphaGo beat a world champion in 2017. In the past five years, machine learning as a subset of the broader category of AI has obtained considerable attention in the research community of granular materials. This work offers a detailed review of the recent advances in machine learning-aided studies of granular materials from the particle-particle interaction at the grain level to the macroscopic simulations of granular flow. This work will start with the application of machine learning in the microscopic particle-particle interaction and associated contact models. Then, different neural networks for learning the constitutive behaviour of granular materials will be reviewed and compared. Finally, the macroscopic simulations of practical engineering or boundary value problems based on the combination of neural networks and numerical methods are discussed. We hope readers will have a clear idea of the development of machine learning-aided modelling of granular materials via this comprehensive review work.
Abstract:Embodied Everyday Task is a popular task in the embodied AI community, requiring agents to make a sequence of actions based on natural language instructions and visual observations. Traditional learning-based approaches face two challenges. Firstly, natural language instructions often lack explicit task planning. Secondly, extensive training is required to equip models with knowledge of the task environment. Previous works based on Large Language Model (LLM) either suffer from poor performance due to the lack of task-specific knowledge or rely on ground truth as few-shot samples. To address the above limitations, we propose a novel approach called Progressive Retrieval Augmented Generation (P-RAG), which not only effectively leverages the powerful language processing capabilities of LLMs but also progressively accumulates task-specific knowledge without ground-truth. Compared to the conventional RAG methods, which retrieve relevant information from the database in a one-shot manner to assist generation, P-RAG introduces an iterative approach to progressively update the database. In each iteration, P-RAG retrieves the latest database and obtains historical information from the previous interaction as experiential references for the current interaction. Moreover, we also introduce a more granular retrieval scheme that not only retrieves similar tasks but also incorporates retrieval of similar situations to provide more valuable reference experiences. Extensive experiments reveal that P-RAG achieves competitive results without utilizing ground truth and can even further improve performance through self-iterations.
Abstract:Simultaneous multislice (SMS) imaging is a powerful technique for accelerating magnetic resonance imaging (MRI) acquisitions. However, SMS reconstruction remains challenging due to the complex signal interactions between and within the excited slices. This study presents a robust SMS MRI reconstruction method using deep generative priors. Starting from Gaussian noise, we leverage denoising diffusion probabilistic models (DDPM) to gradually recover the individual slices through reverse diffusion iterations while imposing data consistency from the measured k-space under readout concatenation framework. The posterior sampling procedure is designed such that the DDPM training can be performed on single-slice images without special adjustments for SMS tasks. Additionally, our method integrates a low-frequency enhancement (LFE) module to address a practical issue that SMS-accelerated fast spin echo (FSE) and echo-planar imaging (EPI) sequences cannot easily embed autocalibration signals. Extensive experiments demonstrate that our approach consistently outperforms existing methods and generalizes well to unseen datasets. The code is available at https://github.com/Solor-pikachu/ROGER after the review process.
Abstract:Different from traditional video retrieval, sign language retrieval is more biased towards understanding the semantic information of human actions contained in video clips. Previous works typically only encode RGB videos to obtain high-level semantic features, resulting in local action details drowned in a large amount of visual information redundancy. Furthermore, existing RGB-based sign retrieval works suffer from the huge memory cost of dense visual data embedding in end-to-end training, and adopt offline RGB encoder instead, leading to suboptimal feature representation. To address these issues, we propose a novel sign language representation framework called Semantically Enhanced Dual-Stream Encoder (SEDS), which integrates Pose and RGB modalities to represent the local and global information of sign language videos. Specifically, the Pose encoder embeds the coordinates of keypoints corresponding to human joints, effectively capturing detailed action features. For better context-aware fusion of two video modalities, we propose a Cross Gloss Attention Fusion (CGAF) module to aggregate the adjacent clip features with similar semantic information from intra-modality and inter-modality. Moreover, a Pose-RGB Fine-grained Matching Objective is developed to enhance the aggregated fusion feature by contextual matching of fine-grained dual-stream features. Besides the offline RGB encoder, the whole framework only contains learnable lightweight networks, which can be trained end-to-end. Extensive experiments demonstrate that our framework significantly outperforms state-of-the-art methods on various datasets.
Abstract:Recently, the transform-based tensor representation has attracted increasing attention in multimedia data (e.g., images and videos) recovery problems, which consists of two indispensable components, i.e., transform and characterization. Previously, the development of transform-based tensor representation mainly focuses on the transform aspect. Although several attempts consider using shallow matrix factorization (e.g., singular value decomposition and negative matrix factorization) to characterize the frontal slices of transformed tensor (termed as latent tensor), the faithful characterization aspect is underexplored. To address this issue, we propose a unified Deep Tensor Representation (termed as DTR) framework by synergistically combining the deep latent generative module and the deep transform module. Especially, the deep latent generative module can faithfully generate the latent tensor as compared with shallow matrix factorization. The new DTR framework not only allows us to better understand the classic shallow representations, but also leads us to explore new representation. To examine the representation ability of the proposed DTR, we consider the representative multi-dimensional data recovery task and suggest an unsupervised DTR-based multi-dimensional data recovery model. Extensive experiments demonstrate that DTR achieves superior performance compared to state-of-the-art methods in both quantitative and qualitative aspects, especially for fine details recovery.
Abstract:Sign language recognition (SLR) has long been plagued by insufficient model representation capabilities. Although current pre-training approaches have alleviated this dilemma to some extent and yielded promising performance by employing various pretext tasks on sign pose data, these methods still suffer from two primary limitations: 1) Explicit motion information is usually disregarded in previous pretext tasks, leading to partial information loss and limited representation capability. 2) Previous methods focus on the local context of a sign pose sequence, without incorporating the guidance of the global meaning of lexical signs. To this end, we propose a Motion-Aware masked autoencoder with Semantic Alignment (MASA) that integrates rich motion cues and global semantic information in a self-supervised learning paradigm for SLR. Our framework contains two crucial components, i.e., a motion-aware masked autoencoder (MA) and a momentum semantic alignment module (SA). Specifically, in MA, we introduce an autoencoder architecture with a motion-aware masked strategy to reconstruct motion residuals of masked frames, thereby explicitly exploring dynamic motion cues among sign pose sequences. Moreover, in SA, we embed our framework with global semantic awareness by aligning the embeddings of different augmented samples from the input sequence in the shared latent space. In this way, our framework can simultaneously learn local motion cues and global semantic features for comprehensive sign language representation. Furthermore, we conduct extensive experiments to validate the effectiveness of our method, achieving new state-of-the-art performance on four public benchmarks.
Abstract:Timely status updating is the premise of emerging interaction-based applications in the Internet of Things (IoT). Using redundant devices to update the status of interest is a promising method to improve the timeliness of information. However, parallel status updating leads to out-of-order arrivals at the monitor, significantly challenging timeliness analysis. This work studies the Age of Information (AoI) of a multi-queue status update system where multiple devices monitor the same physical process. Specifically, two systems are considered: the Basic System, which only has type-1 devices that are ad hoc devices located close to the source, and the Hybrid System, which contains additional type-2 devices that are infrastructure-based devices located in fixed points compared to the Basic System. Using the Stochastic Hybrid Systems (SHS) framework, a mathematical model that combines discrete and continuous dynamics, we derive the expressions of the average AoI of the considered two systems in closed form. Numerical results verify the accuracy of the analysis. It is shown that when the number and parameters of the type-1 devices/type-2 devices are fixed, the logarithm of average AoI will linearly decrease with the logarithm of the total arrival rate of type-2 devices or that of the number of type-1 devices under specific condition. It has also been demonstrated that the proposed systems can significantly outperform the FCFS M/M/N status update system.
Abstract:Deep learning has shown the great power in the field of fault detection. However, for incipient faults with tiny amplitude, the detection performance of the current deep learning networks (DLNs) is not satisfactory. Even if prior information about the faults is utilized, DLNs can't successfully detect faults 3, 9 and 15 in Tennessee Eastman process (TEP). These faults are notoriously difficult to detect, lacking effective detection technologies in the field of fault detection. In this work, we propose Autoencoder-assisted Feature Ensemble Net (AE-FENet): a deep feature ensemble framework that uses the unsupervised autoencoder to conduct the feature transformation. Compared with the principle component analysis (PCA) technique adopted in the original Feature Ensemble Net (FENet), autoencoder can mine more exact features on incipient faults, which results in the better detection performance of AE-FENet. With same kinds of basic detectors, AE-FENet achieves a state-of-the-art average accuracy over 96% on faults 3, 9 and 15 in TEP, which represents a significant enhancement in performance compared to other methods. Plenty of experiments have been done to extend our framework, proving that DLNs can be utilized efficiently within this architecture.