Abstract:Object removal has so far been dominated by the mask-and-inpaint paradigm, where the masked region is excluded from the input, leaving models relying on unmasked areas to inpaint the missing region. However, this approach lacks contextual information for the masked area, often resulting in unstable performance. In this work, we introduce SmartEraser, built with a new removing paradigm called Masked-Region Guidance. This paradigm retains the masked region in the input, using it as guidance for the removal process. It offers several distinct advantages: (a) it guides the model to accurately identify the object to be removed, preventing its regeneration in the output; (b) since the user mask often extends beyond the object itself, it aids in preserving the surrounding context in the final result. Leveraging this new paradigm, we present Syn4Removal, a large-scale object removal dataset, where instance segmentation data is used to copy and paste objects onto images as removal targets, with the original images serving as ground truths. Experimental results demonstrate that SmartEraser significantly outperforms existing methods, achieving superior performance in object removal, especially in complex scenes with intricate compositions.
Abstract:Different from traditional video retrieval, sign language retrieval is more biased towards understanding the semantic information of human actions contained in video clips. Previous works typically only encode RGB videos to obtain high-level semantic features, resulting in local action details drowned in a large amount of visual information redundancy. Furthermore, existing RGB-based sign retrieval works suffer from the huge memory cost of dense visual data embedding in end-to-end training, and adopt offline RGB encoder instead, leading to suboptimal feature representation. To address these issues, we propose a novel sign language representation framework called Semantically Enhanced Dual-Stream Encoder (SEDS), which integrates Pose and RGB modalities to represent the local and global information of sign language videos. Specifically, the Pose encoder embeds the coordinates of keypoints corresponding to human joints, effectively capturing detailed action features. For better context-aware fusion of two video modalities, we propose a Cross Gloss Attention Fusion (CGAF) module to aggregate the adjacent clip features with similar semantic information from intra-modality and inter-modality. Moreover, a Pose-RGB Fine-grained Matching Objective is developed to enhance the aggregated fusion feature by contextual matching of fine-grained dual-stream features. Besides the offline RGB encoder, the whole framework only contains learnable lightweight networks, which can be trained end-to-end. Extensive experiments demonstrate that our framework significantly outperforms state-of-the-art methods on various datasets.